Loading…

Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law

Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2007-05, Vol.48 (5), p.110
Main Authors: Ibragimov, Nail H., Khamitova, Raisa, Thidé, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3
cites cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3
container_end_page
container_issue 5
container_start_page 110
container_title Journal of mathematical physics
container_volume 48
creator Ibragimov, Nail H.
Khamitova, Raisa
Thidé, Bo
description Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.
doi_str_mv 10.1063/1.2735822
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_bth_8198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283234511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</originalsourceid><addsrcrecordid>eNqF0btOwzAUBmALgUQpDLxBhMTAJcXHcRJnrFooSEVdgNVyHIemSuNgJy1svAavx5OQtlE7IMHk5Tu_zwWhU8A9wIF3Az0Sej4jZA91ALPIDQOf7aMOxoS4hDJ2iI6snWEMwCjtoNFAF1aZhagyXTi5WFon1cappsp5FO9LlefuMDNCOuqtXhvrLLNq6iS1yJ3JdP79-WVXZcfoIBW5VSft20XPd7dPg3t3PBk9DPpjV9KAVq4HsYejkMQgw0D6IYkIEaBIAKlK_YT4sYBYeCpVnsDNHDRgNAwlY0ADEkeJ10XXm1y7VGUd89Jkc2E-uBYZH2Yvfa7NK69rDj5mFBp-9T-PqylnELFGn210afRbrWzFZ7o2RTMPJ-AHBDf9Nuhig6TR1hqVbkMB89UNOPD2Bo09bwOFlSJPjShkZncFjFEPyOrjy7ZNmVXrNW_NQptdIC-T9C_8u4Mf9eKhmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215620729</pqid></control><display><type>article</type><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</creator><creatorcontrib>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</creatorcontrib><description>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</description><identifier>ISSN: 0022-2488</identifier><identifier>ISSN: 1089-7658</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2735822</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Conservation laws ; Differential equations ; electric charge ; Exact sciences and technology ; Fysik ; Linear programming ; Mathematical methods in physics ; Mathematics ; Maxwell equations ; NATURAL SCIENCES ; NATURVETENSKAP ; Physics ; Sciences and techniques of general use ; Studies</subject><ispartof>Journal of mathematical physics, 2007-05, Vol.48 (5), p.110</ispartof><rights>American Institute of Physics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Physics May 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</citedby><cites>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2735822$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18843128$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:bth-8198$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-150841$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibragimov, Nail H.</creatorcontrib><creatorcontrib>Khamitova, Raisa</creatorcontrib><creatorcontrib>Thidé, Bo</creatorcontrib><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><title>Journal of mathematical physics</title><description>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</description><subject>Conservation laws</subject><subject>Differential equations</subject><subject>electric charge</subject><subject>Exact sciences and technology</subject><subject>Fysik</subject><subject>Linear programming</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0022-2488</issn><issn>1089-7658</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0btOwzAUBmALgUQpDLxBhMTAJcXHcRJnrFooSEVdgNVyHIemSuNgJy1svAavx5OQtlE7IMHk5Tu_zwWhU8A9wIF3Az0Sej4jZA91ALPIDQOf7aMOxoS4hDJ2iI6snWEMwCjtoNFAF1aZhagyXTi5WFon1cappsp5FO9LlefuMDNCOuqtXhvrLLNq6iS1yJ3JdP79-WVXZcfoIBW5VSft20XPd7dPg3t3PBk9DPpjV9KAVq4HsYejkMQgw0D6IYkIEaBIAKlK_YT4sYBYeCpVnsDNHDRgNAwlY0ADEkeJ10XXm1y7VGUd89Jkc2E-uBYZH2Yvfa7NK69rDj5mFBp-9T-PqylnELFGn210afRbrWzFZ7o2RTMPJ-AHBDf9Nuhig6TR1hqVbkMB89UNOPD2Bo09bwOFlSJPjShkZncFjFEPyOrjy7ZNmVXrNW_NQptdIC-T9C_8u4Mf9eKhmA</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Ibragimov, Nail H.</creator><creator>Khamitova, Raisa</creator><creator>Thidé, Bo</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF3</scope><scope>DF2</scope></search><sort><creationdate>20070501</creationdate><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><author>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Conservation laws</topic><topic>Differential equations</topic><topic>electric charge</topic><topic>Exact sciences and technology</topic><topic>Fysik</topic><topic>Linear programming</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibragimov, Nail H.</creatorcontrib><creatorcontrib>Khamitova, Raisa</creatorcontrib><creatorcontrib>Thidé, Bo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Blekinge Tekniska Högskola</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibragimov, Nail H.</au><au>Khamitova, Raisa</au><au>Thidé, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</atitle><jtitle>Journal of mathematical physics</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>48</volume><issue>5</issue><spage>110</spage><pages>110-</pages><issn>0022-2488</issn><issn>1089-7658</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2735822</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2007-05, Vol.48 (5), p.110
issn 0022-2488
1089-7658
1089-7658
language eng
recordid cdi_swepub_primary_oai_DiVA_org_bth_8198
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Conservation laws
Differential equations
electric charge
Exact sciences and technology
Fysik
Linear programming
Mathematical methods in physics
Mathematics
Maxwell equations
NATURAL SCIENCES
NATURVETENSKAP
Physics
Sciences and techniques of general use
Studies
title Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20for%20the%20Maxwell-Dirac%20equations%20with%20dual%20Ohm%E2%80%99s%20law&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ibragimov,%20Nail%20H.&rft.date=2007-05-01&rft.volume=48&rft.issue=5&rft.spage=110&rft.pages=110-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2735822&rft_dat=%3Cproquest_swepu%3E1283234511%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215620729&rft_id=info:pmid/&rfr_iscdi=true