Loading…
Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law
Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl. 333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey...
Saved in:
Published in: | Journal of mathematical physics 2007-05, Vol.48 (5), p.110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3 |
container_end_page | |
container_issue | 5 |
container_start_page | 110 |
container_title | Journal of mathematical physics |
container_volume | 48 |
creator | Ibragimov, Nail H. Khamitova, Raisa Thidé, Bo |
description | Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl.
333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time. |
doi_str_mv | 10.1063/1.2735822 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_bth_8198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283234511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</originalsourceid><addsrcrecordid>eNqF0btOwzAUBmALgUQpDLxBhMTAJcXHcRJnrFooSEVdgNVyHIemSuNgJy1svAavx5OQtlE7IMHk5Tu_zwWhU8A9wIF3Az0Sej4jZA91ALPIDQOf7aMOxoS4hDJ2iI6snWEMwCjtoNFAF1aZhagyXTi5WFon1cappsp5FO9LlefuMDNCOuqtXhvrLLNq6iS1yJ3JdP79-WVXZcfoIBW5VSft20XPd7dPg3t3PBk9DPpjV9KAVq4HsYejkMQgw0D6IYkIEaBIAKlK_YT4sYBYeCpVnsDNHDRgNAwlY0ADEkeJ10XXm1y7VGUd89Jkc2E-uBYZH2Yvfa7NK69rDj5mFBp-9T-PqylnELFGn210afRbrWzFZ7o2RTMPJ-AHBDf9Nuhig6TR1hqVbkMB89UNOPD2Bo09bwOFlSJPjShkZncFjFEPyOrjy7ZNmVXrNW_NQptdIC-T9C_8u4Mf9eKhmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215620729</pqid></control><display><type>article</type><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</creator><creatorcontrib>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</creatorcontrib><description>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl.
333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</description><identifier>ISSN: 0022-2488</identifier><identifier>ISSN: 1089-7658</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2735822</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Conservation laws ; Differential equations ; electric charge ; Exact sciences and technology ; Fysik ; Linear programming ; Mathematical methods in physics ; Mathematics ; Maxwell equations ; NATURAL SCIENCES ; NATURVETENSKAP ; Physics ; Sciences and techniques of general use ; Studies</subject><ispartof>Journal of mathematical physics, 2007-05, Vol.48 (5), p.110</ispartof><rights>American Institute of Physics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Physics May 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</citedby><cites>FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2735822$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18843128$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:bth-8198$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-150841$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibragimov, Nail H.</creatorcontrib><creatorcontrib>Khamitova, Raisa</creatorcontrib><creatorcontrib>Thidé, Bo</creatorcontrib><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><title>Journal of mathematical physics</title><description>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl.
333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</description><subject>Conservation laws</subject><subject>Differential equations</subject><subject>electric charge</subject><subject>Exact sciences and technology</subject><subject>Fysik</subject><subject>Linear programming</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0022-2488</issn><issn>1089-7658</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0btOwzAUBmALgUQpDLxBhMTAJcXHcRJnrFooSEVdgNVyHIemSuNgJy1svAavx5OQtlE7IMHk5Tu_zwWhU8A9wIF3Az0Sej4jZA91ALPIDQOf7aMOxoS4hDJ2iI6snWEMwCjtoNFAF1aZhagyXTi5WFon1cappsp5FO9LlefuMDNCOuqtXhvrLLNq6iS1yJ3JdP79-WVXZcfoIBW5VSft20XPd7dPg3t3PBk9DPpjV9KAVq4HsYejkMQgw0D6IYkIEaBIAKlK_YT4sYBYeCpVnsDNHDRgNAwlY0ADEkeJ10XXm1y7VGUd89Jkc2E-uBYZH2Yvfa7NK69rDj5mFBp-9T-PqylnELFGn210afRbrWzFZ7o2RTMPJ-AHBDf9Nuhig6TR1hqVbkMB89UNOPD2Bo09bwOFlSJPjShkZncFjFEPyOrjy7ZNmVXrNW_NQptdIC-T9C_8u4Mf9eKhmA</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Ibragimov, Nail H.</creator><creator>Khamitova, Raisa</creator><creator>Thidé, Bo</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF3</scope><scope>DF2</scope></search><sort><creationdate>20070501</creationdate><title>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</title><author>Ibragimov, Nail H. ; Khamitova, Raisa ; Thidé, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Conservation laws</topic><topic>Differential equations</topic><topic>electric charge</topic><topic>Exact sciences and technology</topic><topic>Fysik</topic><topic>Linear programming</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibragimov, Nail H.</creatorcontrib><creatorcontrib>Khamitova, Raisa</creatorcontrib><creatorcontrib>Thidé, Bo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Blekinge Tekniska Högskola</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibragimov, Nail H.</au><au>Khamitova, Raisa</au><au>Thidé, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law</atitle><jtitle>Journal of mathematical physics</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>48</volume><issue>5</issue><spage>110</spage><pages>110-</pages><issn>0022-2488</issn><issn>1089-7658</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Using a general theorem on conservation laws for arbitrary differential equations proved by Ibragimov [J. Math. Anal. Appl.
333, 311–320 (2007)], we have derived conservation laws for Dirac’s symmetrized Maxwell-Lorentz equations under the assumption that both the electric and magnetic charges obey linear conductivity laws (dual Ohm’s law). We find that this linear system allows for conservation laws which are nonlocal in time.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2735822</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2007-05, Vol.48 (5), p.110 |
issn | 0022-2488 1089-7658 1089-7658 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_bth_8198 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Conservation laws Differential equations electric charge Exact sciences and technology Fysik Linear programming Mathematical methods in physics Mathematics Maxwell equations NATURAL SCIENCES NATURVETENSKAP Physics Sciences and techniques of general use Studies |
title | Conservation laws for the Maxwell-Dirac equations with dual Ohm’s law |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20for%20the%20Maxwell-Dirac%20equations%20with%20dual%20Ohm%E2%80%99s%20law&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ibragimov,%20Nail%20H.&rft.date=2007-05-01&rft.volume=48&rft.issue=5&rft.spage=110&rft.pages=110-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2735822&rft_dat=%3Cproquest_swepu%3E1283234511%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-31b30972b1c76c572922a1e261fef5d25ba1ba3efe3a0358468477c881462b9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215620729&rft_id=info:pmid/&rfr_iscdi=true |