Loading…

Using the patient's questionnaire data to screen laryngeal disorders

Abstract This paper is concerned with soft computing techniques for screening laryngeal disorders based on patient's questionnaire data. By applying the genetic search, the most important questionnaire statements are determined and a support vector machine (SVM) classifier is designed for categ...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2009-02, Vol.39 (2), p.148-155
Main Authors: Verikas, A, Gelzinis, A, Bacauskiene, M, Uloza, V, Kaseta, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3
cites cdi_FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3
container_end_page 155
container_issue 2
container_start_page 148
container_title Computers in biology and medicine
container_volume 39
creator Verikas, A
Gelzinis, A
Bacauskiene, M
Uloza, V
Kaseta, M
description Abstract This paper is concerned with soft computing techniques for screening laryngeal disorders based on patient's questionnaire data. By applying the genetic search, the most important questionnaire statements are determined and a support vector machine (SVM) classifier is designed for categorizing the questionnaire data into the healthy , nodular and diffuse classes. To explore the obtained automated decisions, the curvilinear component analysis (CCA) in the space of decisions as well as questionnaire statements is applied. When testing the developed tools on the set of data collected from 180 patients, the classification accuracy of 85.0% was obtained. Bearing in mind the subjective nature of the data, the obtained classification accuracy is rather encouraging. The CCA allows obtaining ordered two-dimensional maps of the data in various spaces and facilitates the exploration of automated decisions provided by the system and determination of relevant groups of patients for various comparisons.
doi_str_mv 10.1016/j.compbiomed.2008.11.008
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_hh_101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482508001753</els_id><sourcerecordid>20357955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EokvhFVAkJKoeEsZ2nDgXpNLSglSJA5Sr5TiTXS9ZO9hJq749DrtqpV7gNJb8zcw_8w8hGYWCAq0-bAvjd2Nr_Q67ggHIgtIihWdkRWXd5CB4-ZysACjkpWTiiLyKcQsAJXB4SY5oQ8uSs2ZFLm6idets2mA26smim05i9nvGOFnvnLYBs05POpt8Fk1AdNmgw71box6yzkYfOgzxNXnR6yHim0M8JjeXn3-cf8mvv119PT-7zo1gMOVSM6YFdhraHiQ3UAE3tRaN0T2UVAvaUimZMZVsK6ORy640dSP6vmI91oYfk9N93XiH49yqMdhdUqO8turC_jxTPqzVZqPSjhL7fs-Owf-dR-1sNDgM2qGfo6qqholGlP8EGXCRRIgEvnsCbv0cXBo4NeQ8rZ82PFFyT5ngYwzYP6iksAir1FY9mqcW8xSlKoWU-vbQYG6Xv4fEg1sJ-LQHMC351mJQ0STLDHbJJzOpztv_6fLxSREzWGeNHn7hPcbHmVRkCtT35YiWGwKZXrXg_A-a8MTP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033008193</pqid></control><display><type>article</type><title>Using the patient's questionnaire data to screen laryngeal disorders</title><source>Elsevier</source><creator>Verikas, A ; Gelzinis, A ; Bacauskiene, M ; Uloza, V ; Kaseta, M</creator><creatorcontrib>Verikas, A ; Gelzinis, A ; Bacauskiene, M ; Uloza, V ; Kaseta, M</creatorcontrib><description>Abstract This paper is concerned with soft computing techniques for screening laryngeal disorders based on patient's questionnaire data. By applying the genetic search, the most important questionnaire statements are determined and a support vector machine (SVM) classifier is designed for categorizing the questionnaire data into the healthy , nodular and diffuse classes. To explore the obtained automated decisions, the curvilinear component analysis (CCA) in the space of decisions as well as questionnaire statements is applied. When testing the developed tools on the set of data collected from 180 patients, the classification accuracy of 85.0% was obtained. Bearing in mind the subjective nature of the data, the obtained classification accuracy is rather encouraging. The CCA allows obtaining ordered two-dimensional maps of the data in various spaces and facilitates the exploration of automated decisions provided by the system and determination of relevant groups of patients for various comparisons.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2008.11.008</identifier><identifier>PMID: 19144329</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Automation ; Curvilinear component analysis ; Genetic search ; Humans ; Internal Medicine ; Kirurgi ; Laryngeal Diseases - diagnosis ; Larynx pathology ; MEDICIN ; MEDICINE ; Other ; Otorhinolaryngologi ; Otorhinolaryngology ; Query data ; Support vector machine ; Surgery ; Surveys and Questionnaires ; Variable selection</subject><ispartof>Computers in biology and medicine, 2009-02, Vol.39 (2), p.148-155</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3</citedby><cites>FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19144329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-101$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Verikas, A</creatorcontrib><creatorcontrib>Gelzinis, A</creatorcontrib><creatorcontrib>Bacauskiene, M</creatorcontrib><creatorcontrib>Uloza, V</creatorcontrib><creatorcontrib>Kaseta, M</creatorcontrib><title>Using the patient's questionnaire data to screen laryngeal disorders</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract This paper is concerned with soft computing techniques for screening laryngeal disorders based on patient's questionnaire data. By applying the genetic search, the most important questionnaire statements are determined and a support vector machine (SVM) classifier is designed for categorizing the questionnaire data into the healthy , nodular and diffuse classes. To explore the obtained automated decisions, the curvilinear component analysis (CCA) in the space of decisions as well as questionnaire statements is applied. When testing the developed tools on the set of data collected from 180 patients, the classification accuracy of 85.0% was obtained. Bearing in mind the subjective nature of the data, the obtained classification accuracy is rather encouraging. The CCA allows obtaining ordered two-dimensional maps of the data in various spaces and facilitates the exploration of automated decisions provided by the system and determination of relevant groups of patients for various comparisons.</description><subject>Automation</subject><subject>Curvilinear component analysis</subject><subject>Genetic search</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kirurgi</subject><subject>Laryngeal Diseases - diagnosis</subject><subject>Larynx pathology</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Other</subject><subject>Otorhinolaryngologi</subject><subject>Otorhinolaryngology</subject><subject>Query data</subject><subject>Support vector machine</subject><subject>Surgery</subject><subject>Surveys and Questionnaires</subject><subject>Variable selection</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNksFu1DAQhi0EokvhFVAkJKoeEsZ2nDgXpNLSglSJA5Sr5TiTXS9ZO9hJq749DrtqpV7gNJb8zcw_8w8hGYWCAq0-bAvjd2Nr_Q67ggHIgtIihWdkRWXd5CB4-ZysACjkpWTiiLyKcQsAJXB4SY5oQ8uSs2ZFLm6idets2mA26smim05i9nvGOFnvnLYBs05POpt8Fk1AdNmgw71box6yzkYfOgzxNXnR6yHim0M8JjeXn3-cf8mvv119PT-7zo1gMOVSM6YFdhraHiQ3UAE3tRaN0T2UVAvaUimZMZVsK6ORy640dSP6vmI91oYfk9N93XiH49yqMdhdUqO8turC_jxTPqzVZqPSjhL7fs-Owf-dR-1sNDgM2qGfo6qqholGlP8EGXCRRIgEvnsCbv0cXBo4NeQ8rZ82PFFyT5ngYwzYP6iksAir1FY9mqcW8xSlKoWU-vbQYG6Xv4fEg1sJ-LQHMC351mJQ0STLDHbJJzOpztv_6fLxSREzWGeNHn7hPcbHmVRkCtT35YiWGwKZXrXg_A-a8MTP</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Verikas, A</creator><creator>Gelzinis, A</creator><creator>Bacauskiene, M</creator><creator>Uloza, V</creator><creator>Kaseta, M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8Z</scope></search><sort><creationdate>20090201</creationdate><title>Using the patient's questionnaire data to screen laryngeal disorders</title><author>Verikas, A ; Gelzinis, A ; Bacauskiene, M ; Uloza, V ; Kaseta, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automation</topic><topic>Curvilinear component analysis</topic><topic>Genetic search</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kirurgi</topic><topic>Laryngeal Diseases - diagnosis</topic><topic>Larynx pathology</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Other</topic><topic>Otorhinolaryngologi</topic><topic>Otorhinolaryngology</topic><topic>Query data</topic><topic>Support vector machine</topic><topic>Surgery</topic><topic>Surveys and Questionnaires</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verikas, A</creatorcontrib><creatorcontrib>Gelzinis, A</creatorcontrib><creatorcontrib>Bacauskiene, M</creatorcontrib><creatorcontrib>Uloza, V</creatorcontrib><creatorcontrib>Kaseta, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Halmstad</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verikas, A</au><au>Gelzinis, A</au><au>Bacauskiene, M</au><au>Uloza, V</au><au>Kaseta, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the patient's questionnaire data to screen laryngeal disorders</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>39</volume><issue>2</issue><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract This paper is concerned with soft computing techniques for screening laryngeal disorders based on patient's questionnaire data. By applying the genetic search, the most important questionnaire statements are determined and a support vector machine (SVM) classifier is designed for categorizing the questionnaire data into the healthy , nodular and diffuse classes. To explore the obtained automated decisions, the curvilinear component analysis (CCA) in the space of decisions as well as questionnaire statements is applied. When testing the developed tools on the set of data collected from 180 patients, the classification accuracy of 85.0% was obtained. Bearing in mind the subjective nature of the data, the obtained classification accuracy is rather encouraging. The CCA allows obtaining ordered two-dimensional maps of the data in various spaces and facilitates the exploration of automated decisions provided by the system and determination of relevant groups of patients for various comparisons.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>19144329</pmid><doi>10.1016/j.compbiomed.2008.11.008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2009-02, Vol.39 (2), p.148-155
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_swepub_primary_oai_DiVA_org_hh_101
source Elsevier
subjects Automation
Curvilinear component analysis
Genetic search
Humans
Internal Medicine
Kirurgi
Laryngeal Diseases - diagnosis
Larynx pathology
MEDICIN
MEDICINE
Other
Otorhinolaryngologi
Otorhinolaryngology
Query data
Support vector machine
Surgery
Surveys and Questionnaires
Variable selection
title Using the patient's questionnaire data to screen laryngeal disorders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20patient's%20questionnaire%20data%20to%20screen%20laryngeal%20disorders&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Verikas,%20A&rft.date=2009-02-01&rft.volume=39&rft.issue=2&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2008.11.008&rft_dat=%3Cproquest_swepu%3E20357955%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-8a22a5eda0bf083c0603c7a59caf041a51b1882cc68b6cae38d4c795ff62fe7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033008193&rft_id=info:pmid/19144329&rfr_iscdi=true