Loading…

Shear testing of thick adhesive layers using the ENF-specimen

An existing experimental method to determine cohesive laws for adhesive layers loaded in shear is further developed. The method is based on differentiation of the energy release rate (ERR) with respect to the adhesive shear deformation at the crack tip. The test geometry used is an ENF-specimen for...

Full description

Saved in:
Bibliographic Details
Published in:International journal of adhesion and adhesives 2015-10, Vol.62, p.130-138
Main Authors: Alfredsson, K.S., Biel, A., Salimi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An existing experimental method to determine cohesive laws for adhesive layers loaded in shear is further developed. The method is based on differentiation of the energy release rate (ERR) with respect to the adhesive shear deformation at the crack tip. The test geometry used is an ENF-specimen for which the adherends are assumed to deform linearly elastic. The original method is expanded to account for situations where the thickness of the adhesive layer is not negligible as compared to the adherend thickness. To this end, a novel mathematical expression for the energy release rate (ERR) is derived. No assumptions on the form of the cohesive law are made; it is implicitly included in the derivation. The expression for the ERR contains the applied load and the shear deformation of the adhesive layer at the initial position of the crack tip, in addition to geometrical properties and the elastic modulus of the adherend material. Numerical simulations are performed to verify the accuracy of the mathematical expression for the ERR. Preliminary results from experiments performed on an epoxy adhesive are presented. The cohesive law of the adhesive layer is extracted by using a blunted crack tip. Verifying simulations confirm that the local pre-fracture behavior is accurately captured.
ISSN:0143-7496
1879-0127
1879-0127
DOI:10.1016/j.ijadhadh.2015.07.008