Loading…
Identification of dynamic cutting force coefficients and chatter stability with process damping
This paper presents a cutting force model which has three dynamic cutting force coefficients related to regenerative chip thickness, velocity and acceleration terms, respectively. The dynamic cutting force coefficients are identified from controlled orthogonal cutting tests with a fast tool servo os...
Saved in:
Published in: | CIRP annals 2008, Vol.57 (1), p.371-374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a cutting force model which has three dynamic cutting force coefficients related to regenerative chip thickness, velocity and acceleration terms, respectively. The dynamic cutting force coefficients are identified from controlled orthogonal cutting tests with a fast tool servo oscillated at the desired frequency to vary the phase between inner and outer modulations. It is shown that the process damping coefficient increases as the tool is worn, which increases the chatter stability limit in cutting. The chatter stability of the dynamic cutting process is solved using Nyquist law, and compared favourably against experimental results at low cutting speeds. |
---|---|
ISSN: | 0007-8506 1726-0604 |
DOI: | 10.1016/j.cirp.2008.03.048 |