Loading…

Studying elastic deformation behaviour of cast irons by acoustic emission

The deformation of metallic materials includes both an elastic and a plastic deformation. In the case of cast irons, the elastic region becomes less pronounced as the graphite changes from spheroidal to flake shaped, as observed in nodular and grey cast iron, respectively. The present study aims to...

Full description

Saved in:
Bibliographic Details
Published in:International journal of cast metals research (Online) 2005-01, Vol.18 (4), p.249-256
Main Authors: Sjögren, T., Svensson, I. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deformation of metallic materials includes both an elastic and a plastic deformation. In the case of cast irons, the elastic region becomes less pronounced as the graphite changes from spheroidal to flake shaped, as observed in nodular and grey cast iron, respectively. The present study aims to correlate the shape of the graphite phase with the deformation behaviour, where the plastic deformation and other strain accommodating events are quantified by measurements of the acoustic emission events occurring in the interior of the material at loading. It also aims to explain how the appearance of cast iron stress-strain curves depends on the graphite morphology where, for instance, spheroidal graphite cast irons exhibit a seemingly linear elastic behaviour in contrast to flake graphite cast irons. The present study includes a series of pearlitic cast iron material grades with differences in nodularity and carbon equivalent, respectively. It is shown that as the roundness of the graphite phase increases, the ability to absorb energy increases. The measured acoustic emission indicates that plastic deformation occurs in the seemingly linear elastic region regardless of the cast iron grade, i.e. no cast iron grade exhibits perfect linear elasticity. The plastic deformation rate in the elastic region increases as the roundness of the graphite decreases and as the carbon equivalent increases. It is shown that the plastic deformation governs the resulting modulus of elasticity in all kind of cast irons, i.e. the modulus of elasticity decreases as the yielding of the material increases. The present study improves the understanding of the deformation behaviour in the elastic region of different cast irons. The survey shows that acoustic emission testing is a useful method when studying the deformation behaviour of cast irons.
ISSN:1364-0461
1743-1336
1743-1336
DOI:10.1179/136404605225023117