Loading…
An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems
In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restr...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2002-01, Vol.191 (47), p.5537-5552 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33 |
container_end_page | 5552 |
container_issue | 47 |
container_start_page | 5537 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 191 |
creator | Hansbo, Anita Hansbo, Peter |
description | In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples. |
doi_str_mv | 10.1016/S0045-7825(02)00524-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_hj_15783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782502005248</els_id><sourcerecordid>27616830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1EJZaWR0DKBUTVBsZOHDsntCotRVrBgT9Xy7HHrKtsvNjeIm68Bq_Hk-BtqkWc8GUkz-_7RjMfIU8pvKRAu1cfAVpeC8n4C2CnAJy1tXxAFlSKvma0kQ_J4oA8Io9TuoHyJGULopZTtZuczxlt5fzkM1Y44ganXG0wr4M9rwadSjNM1Xufk1nj75-_0qHpQiyC0W-zN5WfMkanDVbbGIZik07IkdNjwif39Zh8vrr8dHFdrz68fXexXNWGdzTXQmhqO6mZtNIK2gsuNUInAaHtBieHtu06EGIQtrfMNRQ4WI69sYwx6prmmJzNvuk7bneD2ka_0fGHCtqrN_7LUoX4Va1vFOVC7unTmV7r8R_0erlS-z-gDWc9NLe0sM9ntqz0bYcpq41PpqysJwy7pJjoaCcbKCCfQRNDShHdwZmC2gel7oJS-xQUMHUXlJJF9-x-gE5Gjy7qyfj0V9wCk0D7wr2eOSx3vPUYVTIeJ4PWRzRZ2eD_M-kPraKm_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27616830</pqid></control><display><type>article</type><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><source>ScienceDirect Journals</source><creator>Hansbo, Anita ; Hansbo, Peter</creator><creatorcontrib>Hansbo, Anita ; Hansbo, Peter</creatorcontrib><description>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</description><identifier>ISSN: 0045-7825</identifier><identifier>ISSN: 1879-2138</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(02)00524-8</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation theory ; Computational methods ; Computational techniques ; Convergence of numerical methods ; Discontinuities ; Errors ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; MATEMATIK ; Mathematical methods in physics ; MATHEMATICS ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2002-01, Vol.191 (47), p.5537-5552</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</citedby><cites>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14028019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01352903$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-15783$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansbo, Anita</creatorcontrib><creatorcontrib>Hansbo, Peter</creatorcontrib><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</description><subject>Approximation theory</subject><subject>Computational methods</subject><subject>Computational techniques</subject><subject>Convergence of numerical methods</subject><subject>Discontinuities</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>MATEMATIK</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICS</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi1EJZaWR0DKBUTVBsZOHDsntCotRVrBgT9Xy7HHrKtsvNjeIm68Bq_Hk-BtqkWc8GUkz-_7RjMfIU8pvKRAu1cfAVpeC8n4C2CnAJy1tXxAFlSKvma0kQ_J4oA8Io9TuoHyJGULopZTtZuczxlt5fzkM1Y44ganXG0wr4M9rwadSjNM1Xufk1nj75-_0qHpQiyC0W-zN5WfMkanDVbbGIZik07IkdNjwif39Zh8vrr8dHFdrz68fXexXNWGdzTXQmhqO6mZtNIK2gsuNUInAaHtBieHtu06EGIQtrfMNRQ4WI69sYwx6prmmJzNvuk7bneD2ka_0fGHCtqrN_7LUoX4Va1vFOVC7unTmV7r8R_0erlS-z-gDWc9NLe0sM9ntqz0bYcpq41PpqysJwy7pJjoaCcbKCCfQRNDShHdwZmC2gel7oJS-xQUMHUXlJJF9-x-gE5Gjy7qyfj0V9wCk0D7wr2eOSx3vPUYVTIeJ4PWRzRZ2eD_M-kPraKm_Q</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Hansbo, Anita</creator><creator>Hansbo, Peter</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8X</scope></search><sort><creationdate>20020101</creationdate><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><author>Hansbo, Anita ; Hansbo, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Approximation theory</topic><topic>Computational methods</topic><topic>Computational techniques</topic><topic>Convergence of numerical methods</topic><topic>Discontinuities</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>MATEMATIK</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansbo, Anita</creatorcontrib><creatorcontrib>Hansbo, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Jönköping</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansbo, Anita</au><au>Hansbo, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>191</volume><issue>47</issue><spage>5537</spage><epage>5552</epage><pages>5537-5552</pages><issn>0045-7825</issn><issn>1879-2138</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(02)00524-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2002-01, Vol.191 (47), p.5537-5552 |
issn | 0045-7825 1879-2138 1879-2138 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_hj_15783 |
source | ScienceDirect Journals |
subjects | Approximation theory Computational methods Computational techniques Convergence of numerical methods Discontinuities Errors Exact sciences and technology Finite element method Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer MATEMATIK Mathematical methods in physics MATHEMATICS Physics |
title | An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unfitted%20finite%20element%20method,%20based%20on%20Nitsche%E2%80%99s%20method,%20for%20elliptic%20interface%20problems&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hansbo,%20Anita&rft.date=2002-01-01&rft.volume=191&rft.issue=47&rft.spage=5537&rft.epage=5552&rft.pages=5537-5552&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(02)00524-8&rft_dat=%3Cproquest_swepu%3E27616830%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27616830&rft_id=info:pmid/&rfr_iscdi=true |