Loading…

An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems

In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restr...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2002-01, Vol.191 (47), p.5537-5552
Main Authors: Hansbo, Anita, Hansbo, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33
cites cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33
container_end_page 5552
container_issue 47
container_start_page 5537
container_title Computer methods in applied mechanics and engineering
container_volume 191
creator Hansbo, Anita
Hansbo, Peter
description In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.
doi_str_mv 10.1016/S0045-7825(02)00524-8
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_hj_15783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782502005248</els_id><sourcerecordid>27616830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1EJZaWR0DKBUTVBsZOHDsntCotRVrBgT9Xy7HHrKtsvNjeIm68Bq_Hk-BtqkWc8GUkz-_7RjMfIU8pvKRAu1cfAVpeC8n4C2CnAJy1tXxAFlSKvma0kQ_J4oA8Io9TuoHyJGULopZTtZuczxlt5fzkM1Y44ganXG0wr4M9rwadSjNM1Xufk1nj75-_0qHpQiyC0W-zN5WfMkanDVbbGIZik07IkdNjwif39Zh8vrr8dHFdrz68fXexXNWGdzTXQmhqO6mZtNIK2gsuNUInAaHtBieHtu06EGIQtrfMNRQ4WI69sYwx6prmmJzNvuk7bneD2ka_0fGHCtqrN_7LUoX4Va1vFOVC7unTmV7r8R_0erlS-z-gDWc9NLe0sM9ntqz0bYcpq41PpqysJwy7pJjoaCcbKCCfQRNDShHdwZmC2gel7oJS-xQUMHUXlJJF9-x-gE5Gjy7qyfj0V9wCk0D7wr2eOSx3vPUYVTIeJ4PWRzRZ2eD_M-kPraKm_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27616830</pqid></control><display><type>article</type><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><source>ScienceDirect Journals</source><creator>Hansbo, Anita ; Hansbo, Peter</creator><creatorcontrib>Hansbo, Anita ; Hansbo, Peter</creatorcontrib><description>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</description><identifier>ISSN: 0045-7825</identifier><identifier>ISSN: 1879-2138</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(02)00524-8</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation theory ; Computational methods ; Computational techniques ; Convergence of numerical methods ; Discontinuities ; Errors ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; MATEMATIK ; Mathematical methods in physics ; MATHEMATICS ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2002-01, Vol.191 (47), p.5537-5552</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</citedby><cites>FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14028019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01352903$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-15783$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansbo, Anita</creatorcontrib><creatorcontrib>Hansbo, Peter</creatorcontrib><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</description><subject>Approximation theory</subject><subject>Computational methods</subject><subject>Computational techniques</subject><subject>Convergence of numerical methods</subject><subject>Discontinuities</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>MATEMATIK</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICS</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi1EJZaWR0DKBUTVBsZOHDsntCotRVrBgT9Xy7HHrKtsvNjeIm68Bq_Hk-BtqkWc8GUkz-_7RjMfIU8pvKRAu1cfAVpeC8n4C2CnAJy1tXxAFlSKvma0kQ_J4oA8Io9TuoHyJGULopZTtZuczxlt5fzkM1Y44ganXG0wr4M9rwadSjNM1Xufk1nj75-_0qHpQiyC0W-zN5WfMkanDVbbGIZik07IkdNjwif39Zh8vrr8dHFdrz68fXexXNWGdzTXQmhqO6mZtNIK2gsuNUInAaHtBieHtu06EGIQtrfMNRQ4WI69sYwx6prmmJzNvuk7bneD2ka_0fGHCtqrN_7LUoX4Va1vFOVC7unTmV7r8R_0erlS-z-gDWc9NLe0sM9ntqz0bYcpq41PpqysJwy7pJjoaCcbKCCfQRNDShHdwZmC2gel7oJS-xQUMHUXlJJF9-x-gE5Gjy7qyfj0V9wCk0D7wr2eOSx3vPUYVTIeJ4PWRzRZ2eD_M-kPraKm_Q</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Hansbo, Anita</creator><creator>Hansbo, Peter</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8X</scope></search><sort><creationdate>20020101</creationdate><title>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</title><author>Hansbo, Anita ; Hansbo, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Approximation theory</topic><topic>Computational methods</topic><topic>Computational techniques</topic><topic>Convergence of numerical methods</topic><topic>Discontinuities</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>MATEMATIK</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansbo, Anita</creatorcontrib><creatorcontrib>Hansbo, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Jönköping</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansbo, Anita</au><au>Hansbo, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>191</volume><issue>47</issue><spage>5537</spage><epage>5552</epage><pages>5537-5552</pages><issn>0045-7825</issn><issn>1879-2138</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(02)00524-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2002-01, Vol.191 (47), p.5537-5552
issn 0045-7825
1879-2138
1879-2138
language eng
recordid cdi_swepub_primary_oai_DiVA_org_hj_15783
source ScienceDirect Journals
subjects Approximation theory
Computational methods
Computational techniques
Convergence of numerical methods
Discontinuities
Errors
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Heat conduction
Heat transfer
MATEMATIK
Mathematical methods in physics
MATHEMATICS
Physics
title An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unfitted%20finite%20element%20method,%20based%20on%20Nitsche%E2%80%99s%20method,%20for%20elliptic%20interface%20problems&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hansbo,%20Anita&rft.date=2002-01-01&rft.volume=191&rft.issue=47&rft.spage=5537&rft.epage=5552&rft.pages=5537-5552&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(02)00524-8&rft_dat=%3Cproquest_swepu%3E27616830%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-77a1d68a28d8d719758ae0680e046bf8b4466077b7d9d2f31050d5e9cd2221f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27616830&rft_id=info:pmid/&rfr_iscdi=true