Loading…

Effect of WEDM Process Parameters on Surface Morphology of Nitinol Shape Memory Alloy

Nickel–titanium shape memory alloys (SMAs) have started becoming popular owing to their unique ability to memorize or regain their original shape from the plastically deformed condition by means of heating or magnetic or mechanical loading. Nickel–titanium alloys, commonly known as nitinol, have bee...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-11, Vol.13 (21), p.4943
Main Authors: Chaudhari, Rakesh, Vora, Jay J., Patel, Vivek, Lacalle, L. N. López de, Parikh, D. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nickel–titanium shape memory alloys (SMAs) have started becoming popular owing to their unique ability to memorize or regain their original shape from the plastically deformed condition by means of heating or magnetic or mechanical loading. Nickel–titanium alloys, commonly known as nitinol, have been widely used in actuators, microelectromechanical system (MEMS) devices, and many other applications, including in the biomedical, aerospace, and automotive fields. However, nitinol is a difficult-to-cut material because of its versatile specific properties such as the shape memory effect, superelasticity, high specific strength, high wear and corrosion resistance, and severe strain hardening. There are several challenges faced when machining nitinol SMA with conventional machining techniques. Noncontact operation of the wire electrical discharge machining (WEDM) process between the tool (wire) and workpiece significantly eliminates the problems of conventional machining processes. The WEDM process consists of multiple input parameters that should be controlled to obtain great surface quality. In this study, the effect of WEDM process parameters on the surface morphology of nitinol SMA was studied using 3D surface analysis, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis. 3D surface analysis results indicated a higher value of surface roughness (SR) on the top of the work surface and a lower SR on the bottom portion of the work surface. The surface morphology of the machined sample obtained at optimized parameters showed a reduction in microcracks, micropores, and globules in comparison with the machined surface obtained at a high discharge energy level. EDX analysis indicated a machined surface free of molybdenum (tool electrode).
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13214943