Loading…

Screening design of hard metal feedstock powders for supersonic air fuel processing

Replacement of electrolytic hard chromium (EHC) method by Thermal Spray Technology has shown a growing interest the past decades, mainly pioneered by depositing WC-based material by conventional HVOF processes. Lower thermal energy and higher kinetic energy of sprayed particles achieved by newly-dev...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2014-11, Vol.258 (15 November), p.447-457
Main Authors: Lyphout, Christophe, Sato, Katu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773
cites cdi_FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773
container_end_page 457
container_issue 15 November
container_start_page 447
container_title Surface & coatings technology
container_volume 258
creator Lyphout, Christophe
Sato, Katu
description Replacement of electrolytic hard chromium (EHC) method by Thermal Spray Technology has shown a growing interest the past decades, mainly pioneered by depositing WC-based material by conventional HVOF processes. Lower thermal energy and higher kinetic energy of sprayed particles achieved by newly-developed supersonic air fuel system, so-called HVAF-M3, significantly reduce decarburization, and increase wear and corrosion resistance properties, making HVAF-sprayed coatings attractive both economically and environmentally. In the present work, a first order process map has been intended via a full factorial design of experiments (DoE) to establish relationships between powder feedstock characteristics, such as primary carbides grain size, binder grain size and powder strength, and coating microstructure and mechanical properties. A second order process map was then established to study possible correlations between the deposit microstructural properties and their respective abrasion/erosion wear and corrosion performances. •Supersonic Air Fuel system, so-called HVAF-M3, is used to spray WC-Co-Cr powder.•Compared to conventional Process Window, Powder Design map has been here proposed.•Carbides grain size, Binder size and powder strength were selected as DoE factors.•Coarser carbides with finer binder increase the coating abrasion/erosion resistance.•Combining coarser carbides with high powder strength improve corrosion resistance.
doi_str_mv 10.1016/j.surfcoat.2014.08.055
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_hv_6634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897214007658</els_id><sourcerecordid>1651391649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhiMEUpfCK1S-ICGkBDuO7fhG1QKtVIlDW66WMxlvvWTj4Ela8fZktaVXTuPDN_8__oriTPBKcKE_7ypacoDk56rmoql4W3GlXhUb0RpbStmY18WG18qUrTX1SfGWaMc5F8Y2m-L2FjLiGMct65HidmQpsAefe7bH2Q8sIPY0J_jFpvTUYyYWUma0TOszjRGYj5mFBQc25QRItCa9K94EPxC-f56nxf23r3cXV-XNj-_XF-c3JTSCz6Wt665TbWtkz40GJa0BKxofAvQCpEGrAKTmVqi67Tppg5IGutB4bcAbI0-LT8dcesJp6dyU497nPy756C7jz3OX8tY9PDqtZbPCH4_weufvBWl2-0iAw-BHTAs5oZWQVujGrqg-opATUcbwkiy4Oyh3O_dPuTsod7x1q_J18cNzhyfwQ8h-hEgv23W7fk_pQ8GXI4ernceI2RFEHAH7mBFm16f4v6q__LOb_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651391649</pqid></control><display><type>article</type><title>Screening design of hard metal feedstock powders for supersonic air fuel processing</title><source>Elsevier</source><creator>Lyphout, Christophe ; Sato, Katu</creator><creatorcontrib>Lyphout, Christophe ; Sato, Katu</creatorcontrib><description>Replacement of electrolytic hard chromium (EHC) method by Thermal Spray Technology has shown a growing interest the past decades, mainly pioneered by depositing WC-based material by conventional HVOF processes. Lower thermal energy and higher kinetic energy of sprayed particles achieved by newly-developed supersonic air fuel system, so-called HVAF-M3, significantly reduce decarburization, and increase wear and corrosion resistance properties, making HVAF-sprayed coatings attractive both economically and environmentally. In the present work, a first order process map has been intended via a full factorial design of experiments (DoE) to establish relationships between powder feedstock characteristics, such as primary carbides grain size, binder grain size and powder strength, and coating microstructure and mechanical properties. A second order process map was then established to study possible correlations between the deposit microstructural properties and their respective abrasion/erosion wear and corrosion performances. •Supersonic Air Fuel system, so-called HVAF-M3, is used to spray WC-Co-Cr powder.•Compared to conventional Process Window, Powder Design map has been here proposed.•Carbides grain size, Binder size and powder strength were selected as DoE factors.•Coarser carbides with finer binder increase the coating abrasion/erosion resistance.•Combining coarser carbides with high powder strength improve corrosion resistance.</description><identifier>ISSN: 0257-8972</identifier><identifier>ISSN: 1879-3347</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2014.08.055</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Abrasion ; Abrasion resistance ; Abrasive wear ; Applied sciences ; carbides contiguity ; Carbides grain size ; Chromium ; Coatings ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Design of experiment ; erosion resistance ; Exact sciences and technology ; Feedstock ; Grain size ; HVAF ; Manufacturing and materials engineering ; Materials science ; Metal powders ; Metals. Metallurgy ; Microstructure ; Physics ; Powder metallurgy. Composite materials ; Production techniques ; Produktions- och materialteknik ; Surface treatments ; WC-Co-Cr ; WC-CoCr ; Wear resistance</subject><ispartof>Surface &amp; coatings technology, 2014-11, Vol.258 (15 November), p.447-457</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773</citedby><cites>FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28914569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-6634$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyphout, Christophe</creatorcontrib><creatorcontrib>Sato, Katu</creatorcontrib><title>Screening design of hard metal feedstock powders for supersonic air fuel processing</title><title>Surface &amp; coatings technology</title><description>Replacement of electrolytic hard chromium (EHC) method by Thermal Spray Technology has shown a growing interest the past decades, mainly pioneered by depositing WC-based material by conventional HVOF processes. Lower thermal energy and higher kinetic energy of sprayed particles achieved by newly-developed supersonic air fuel system, so-called HVAF-M3, significantly reduce decarburization, and increase wear and corrosion resistance properties, making HVAF-sprayed coatings attractive both economically and environmentally. In the present work, a first order process map has been intended via a full factorial design of experiments (DoE) to establish relationships between powder feedstock characteristics, such as primary carbides grain size, binder grain size and powder strength, and coating microstructure and mechanical properties. A second order process map was then established to study possible correlations between the deposit microstructural properties and their respective abrasion/erosion wear and corrosion performances. •Supersonic Air Fuel system, so-called HVAF-M3, is used to spray WC-Co-Cr powder.•Compared to conventional Process Window, Powder Design map has been here proposed.•Carbides grain size, Binder size and powder strength were selected as DoE factors.•Coarser carbides with finer binder increase the coating abrasion/erosion resistance.•Combining coarser carbides with high powder strength improve corrosion resistance.</description><subject>Abrasion</subject><subject>Abrasion resistance</subject><subject>Abrasive wear</subject><subject>Applied sciences</subject><subject>carbides contiguity</subject><subject>Carbides grain size</subject><subject>Chromium</subject><subject>Coatings</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Design of experiment</subject><subject>erosion resistance</subject><subject>Exact sciences and technology</subject><subject>Feedstock</subject><subject>Grain size</subject><subject>HVAF</subject><subject>Manufacturing and materials engineering</subject><subject>Materials science</subject><subject>Metal powders</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Produktions- och materialteknik</subject><subject>Surface treatments</subject><subject>WC-Co-Cr</subject><subject>WC-CoCr</subject><subject>Wear resistance</subject><issn>0257-8972</issn><issn>1879-3347</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhiMEUpfCK1S-ICGkBDuO7fhG1QKtVIlDW66WMxlvvWTj4Ela8fZktaVXTuPDN_8__oriTPBKcKE_7ypacoDk56rmoql4W3GlXhUb0RpbStmY18WG18qUrTX1SfGWaMc5F8Y2m-L2FjLiGMct65HidmQpsAefe7bH2Q8sIPY0J_jFpvTUYyYWUma0TOszjRGYj5mFBQc25QRItCa9K94EPxC-f56nxf23r3cXV-XNj-_XF-c3JTSCz6Wt665TbWtkz40GJa0BKxofAvQCpEGrAKTmVqi67Tppg5IGutB4bcAbI0-LT8dcesJp6dyU497nPy756C7jz3OX8tY9PDqtZbPCH4_weufvBWl2-0iAw-BHTAs5oZWQVujGrqg-opATUcbwkiy4Oyh3O_dPuTsod7x1q_J18cNzhyfwQ8h-hEgv23W7fk_pQ8GXI4ernceI2RFEHAH7mBFm16f4v6q__LOb_A</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Lyphout, Christophe</creator><creator>Sato, Katu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF5</scope></search><sort><creationdate>20141115</creationdate><title>Screening design of hard metal feedstock powders for supersonic air fuel processing</title><author>Lyphout, Christophe ; Sato, Katu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abrasion</topic><topic>Abrasion resistance</topic><topic>Abrasive wear</topic><topic>Applied sciences</topic><topic>carbides contiguity</topic><topic>Carbides grain size</topic><topic>Chromium</topic><topic>Coatings</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Design of experiment</topic><topic>erosion resistance</topic><topic>Exact sciences and technology</topic><topic>Feedstock</topic><topic>Grain size</topic><topic>HVAF</topic><topic>Manufacturing and materials engineering</topic><topic>Materials science</topic><topic>Metal powders</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Produktions- och materialteknik</topic><topic>Surface treatments</topic><topic>WC-Co-Cr</topic><topic>WC-CoCr</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyphout, Christophe</creatorcontrib><creatorcontrib>Sato, Katu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan Väst</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyphout, Christophe</au><au>Sato, Katu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening design of hard metal feedstock powders for supersonic air fuel processing</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>258</volume><issue>15 November</issue><spage>447</spage><epage>457</epage><pages>447-457</pages><issn>0257-8972</issn><issn>1879-3347</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Replacement of electrolytic hard chromium (EHC) method by Thermal Spray Technology has shown a growing interest the past decades, mainly pioneered by depositing WC-based material by conventional HVOF processes. Lower thermal energy and higher kinetic energy of sprayed particles achieved by newly-developed supersonic air fuel system, so-called HVAF-M3, significantly reduce decarburization, and increase wear and corrosion resistance properties, making HVAF-sprayed coatings attractive both economically and environmentally. In the present work, a first order process map has been intended via a full factorial design of experiments (DoE) to establish relationships between powder feedstock characteristics, such as primary carbides grain size, binder grain size and powder strength, and coating microstructure and mechanical properties. A second order process map was then established to study possible correlations between the deposit microstructural properties and their respective abrasion/erosion wear and corrosion performances. •Supersonic Air Fuel system, so-called HVAF-M3, is used to spray WC-Co-Cr powder.•Compared to conventional Process Window, Powder Design map has been here proposed.•Carbides grain size, Binder size and powder strength were selected as DoE factors.•Coarser carbides with finer binder increase the coating abrasion/erosion resistance.•Combining coarser carbides with high powder strength improve corrosion resistance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2014.08.055</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2014-11, Vol.258 (15 November), p.447-457
issn 0257-8972
1879-3347
1879-3347
language eng
recordid cdi_swepub_primary_oai_DiVA_org_hv_6634
source Elsevier
subjects Abrasion
Abrasion resistance
Abrasive wear
Applied sciences
carbides contiguity
Carbides grain size
Chromium
Coatings
Corrosion
Corrosion environments
Corrosion resistance
Cross-disciplinary physics: materials science
rheology
Design of experiment
erosion resistance
Exact sciences and technology
Feedstock
Grain size
HVAF
Manufacturing and materials engineering
Materials science
Metal powders
Metals. Metallurgy
Microstructure
Physics
Powder metallurgy. Composite materials
Production techniques
Produktions- och materialteknik
Surface treatments
WC-Co-Cr
WC-CoCr
Wear resistance
title Screening design of hard metal feedstock powders for supersonic air fuel processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20design%20of%20hard%20metal%20feedstock%20powders%20for%20supersonic%20air%20fuel%20processing&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Lyphout,%20Christophe&rft.date=2014-11-15&rft.volume=258&rft.issue=15%20November&rft.spage=447&rft.epage=457&rft.pages=447-457&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2014.08.055&rft_dat=%3Cproquest_swepu%3E1651391649%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-922bb58873d076c5397c914affcd1c37e95cc36091528bb39f537cbf4a67ca773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651391649&rft_id=info:pmid/&rfr_iscdi=true