Loading…

Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization

The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after select...

Full description

Saved in:
Bibliographic Details
Published in:Chromatographia 2018, Vol.81 (6), p.851-860
Main Authors: Samuelsson, Jörgen, Leśko, Marek, Enmark, Martin, Högblom, Joakim, Karlsson, Anders, Kaczmarski, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863
cites cdi_FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863
container_end_page 860
container_issue 6
container_start_page 851
container_title Chromatographia
container_volume 81
creator Samuelsson, Jörgen
Leśko, Marek
Enmark, Martin
Högblom, Joakim
Karlsson, Anders
Kaczmarski, Krzysztof
description The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after selecting particle size. As model compounds, we chose two chiral drugs for preparative separation: omeprazole and etiracetam. In each case, two maximum allowed pressure drops were assumed: 80 and 200 bar. The processes were numerically optimized (mechanistic modeling) with a general rate model using a global optimization method. The numerical predictions were experimentally verified at both analytical and pilot scales. The lower allowed pressure drop represents the use of standard equipment, while the higher allowed drop represents more modern equipment. For both compounds, maximum productivity was achieved using short columns packed with small-particle size packing materials. Increasing the allowed backpressure in the separation leads to an increased productivity and reduced solvent consumption. As advanced numerical calculations might not be available in the laboratory, we also investigated a statistically based approach, i.e., the Taguchi method (empirical modeling), for finding the optimal decision variables and compared it with advanced mechanistic modeling. The Taguchi method predicted that shorter columns packed with smaller particles would be preferred over longer columns packed with larger particles. We conclude that the simpler optimization tool, i.e., the Taguchi method, can be used to obtain “good enough” preparative separations, though for accurate processes, optimization, and to determine optimal operational conditions, classical numerical optimization is still necessary.
doi_str_mv 10.1007/s10337-018-3519-z
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kau_67311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053286429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863</originalsourceid><addsrcrecordid>eNp1ktFu0zAUhiMEYmPwANwgS9xwQcB2GjvmAmmUDpCKOmkbt5bjnqQeiR1sZ6h9PV4Mh5bBkJAsWdb5_v8cH_1Z9pTgVwRj_joQXBQ8x6TKi5KIfHcvOyaM0JwQQu9nxxhjkZeVKI6yRyFcpycVjD3MjqioKs6IOM5-rIZoerMztkVz1429RUuwbdwgZdfoXPlodAfowuwAGYvOPQzKq2huAL1TUW_QfONdr6JrvRo2W3QVJqeFVTYa14M3Gl0cJM4G5Bq06mHwaueS69RiEY1XGqLqkQros1tDF96gM1DB1KYzcTtpLlU76o1Bi34wyVJ16DD2L9vH2YNGdQGeHO6T7OpscTn_mC9XHz7NT5e5LjGPeVFz0cxwPSM8LasC0LoQGGrerDlWjVY157xp6pIVuqS1oKBJxQTXmrIKV6w4yV7ufcN3GMZaDt70ym-lU0a-N19OpfOt_KpGyXhBSMLf7vHE9rDWYKNX3R3V3Yo1G9m6G1kKTgnDyeDFwcC7byOEKHsTNHSdsuDGICkuC1qxGRUJff4Peu1Gb9M2EjVj6ZTFRJE9pb0LwUNzOwzBckqU3CdKpkTJKVFylzTP_v7FreJ3hBJAD1tJJduC_9P6_64_AcJm3Pk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046046539</pqid></control><display><type>article</type><title>Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization</title><source>Springer Link</source><creator>Samuelsson, Jörgen ; Leśko, Marek ; Enmark, Martin ; Högblom, Joakim ; Karlsson, Anders ; Kaczmarski, Krzysztof</creator><creatorcontrib>Samuelsson, Jörgen ; Leśko, Marek ; Enmark, Martin ; Högblom, Joakim ; Karlsson, Anders ; Kaczmarski, Krzysztof</creatorcontrib><description>The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after selecting particle size. As model compounds, we chose two chiral drugs for preparative separation: omeprazole and etiracetam. In each case, two maximum allowed pressure drops were assumed: 80 and 200 bar. The processes were numerically optimized (mechanistic modeling) with a general rate model using a global optimization method. The numerical predictions were experimentally verified at both analytical and pilot scales. The lower allowed pressure drop represents the use of standard equipment, while the higher allowed drop represents more modern equipment. For both compounds, maximum productivity was achieved using short columns packed with small-particle size packing materials. Increasing the allowed backpressure in the separation leads to an increased productivity and reduced solvent consumption. As advanced numerical calculations might not be available in the laboratory, we also investigated a statistically based approach, i.e., the Taguchi method (empirical modeling), for finding the optimal decision variables and compared it with advanced mechanistic modeling. The Taguchi method predicted that shorter columns packed with smaller particles would be preferred over longer columns packed with larger particles. We conclude that the simpler optimization tool, i.e., the Taguchi method, can be used to obtain “good enough” preparative separations, though for accurate processes, optimization, and to determine optimal operational conditions, classical numerical optimization is still necessary.</description><identifier>ISSN: 0009-5893</identifier><identifier>ISSN: 1612-1112</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-018-3519-z</identifier><identifier>PMID: 29887619</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Empirical analysis ; Energiteknik ; Energy Technology ; Equilibrium–dispersive model ; Etiracetam ; Feasibility studies ; Global optimization ; Kemi ; Laboratories ; Laboratory Medicine ; Mathematical models ; Omeprazole ; Optimization of productivity ; Original ; Particle size ; Pharmacy ; Predictions ; Preparative chromatography ; Pressure drop ; Productivity ; Proteomics ; Separation ; Taguchi methods ; Taguchi optimization</subject><ispartof>Chromatographia, 2018, Vol.81 (6), p.851-860</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863</citedby><cites>FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863</cites><orcidid>0000-0003-1819-1709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29887619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-67311$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Samuelsson, Jörgen</creatorcontrib><creatorcontrib>Leśko, Marek</creatorcontrib><creatorcontrib>Enmark, Martin</creatorcontrib><creatorcontrib>Högblom, Joakim</creatorcontrib><creatorcontrib>Karlsson, Anders</creatorcontrib><creatorcontrib>Kaczmarski, Krzysztof</creatorcontrib><title>Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><addtitle>Chromatographia</addtitle><description>The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after selecting particle size. As model compounds, we chose two chiral drugs for preparative separation: omeprazole and etiracetam. In each case, two maximum allowed pressure drops were assumed: 80 and 200 bar. The processes were numerically optimized (mechanistic modeling) with a general rate model using a global optimization method. The numerical predictions were experimentally verified at both analytical and pilot scales. The lower allowed pressure drop represents the use of standard equipment, while the higher allowed drop represents more modern equipment. For both compounds, maximum productivity was achieved using short columns packed with small-particle size packing materials. Increasing the allowed backpressure in the separation leads to an increased productivity and reduced solvent consumption. As advanced numerical calculations might not be available in the laboratory, we also investigated a statistically based approach, i.e., the Taguchi method (empirical modeling), for finding the optimal decision variables and compared it with advanced mechanistic modeling. The Taguchi method predicted that shorter columns packed with smaller particles would be preferred over longer columns packed with larger particles. We conclude that the simpler optimization tool, i.e., the Taguchi method, can be used to obtain “good enough” preparative separations, though for accurate processes, optimization, and to determine optimal operational conditions, classical numerical optimization is still necessary.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Empirical analysis</subject><subject>Energiteknik</subject><subject>Energy Technology</subject><subject>Equilibrium–dispersive model</subject><subject>Etiracetam</subject><subject>Feasibility studies</subject><subject>Global optimization</subject><subject>Kemi</subject><subject>Laboratories</subject><subject>Laboratory Medicine</subject><subject>Mathematical models</subject><subject>Omeprazole</subject><subject>Optimization of productivity</subject><subject>Original</subject><subject>Particle size</subject><subject>Pharmacy</subject><subject>Predictions</subject><subject>Preparative chromatography</subject><subject>Pressure drop</subject><subject>Productivity</subject><subject>Proteomics</subject><subject>Separation</subject><subject>Taguchi methods</subject><subject>Taguchi optimization</subject><issn>0009-5893</issn><issn>1612-1112</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1ktFu0zAUhiMEYmPwANwgS9xwQcB2GjvmAmmUDpCKOmkbt5bjnqQeiR1sZ6h9PV4Mh5bBkJAsWdb5_v8cH_1Z9pTgVwRj_joQXBQ8x6TKi5KIfHcvOyaM0JwQQu9nxxhjkZeVKI6yRyFcpycVjD3MjqioKs6IOM5-rIZoerMztkVz1429RUuwbdwgZdfoXPlodAfowuwAGYvOPQzKq2huAL1TUW_QfONdr6JrvRo2W3QVJqeFVTYa14M3Gl0cJM4G5Bq06mHwaueS69RiEY1XGqLqkQros1tDF96gM1DB1KYzcTtpLlU76o1Bi34wyVJ16DD2L9vH2YNGdQGeHO6T7OpscTn_mC9XHz7NT5e5LjGPeVFz0cxwPSM8LasC0LoQGGrerDlWjVY157xp6pIVuqS1oKBJxQTXmrIKV6w4yV7ufcN3GMZaDt70ym-lU0a-N19OpfOt_KpGyXhBSMLf7vHE9rDWYKNX3R3V3Yo1G9m6G1kKTgnDyeDFwcC7byOEKHsTNHSdsuDGICkuC1qxGRUJff4Peu1Gb9M2EjVj6ZTFRJE9pb0LwUNzOwzBckqU3CdKpkTJKVFylzTP_v7FreJ3hBJAD1tJJduC_9P6_64_AcJm3Pk</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Samuelsson, Jörgen</creator><creator>Leśko, Marek</creator><creator>Enmark, Martin</creator><creator>Högblom, Joakim</creator><creator>Karlsson, Anders</creator><creator>Kaczmarski, Krzysztof</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>AAMOE</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG3</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-1819-1709</orcidid></search><sort><creationdate>2018</creationdate><title>Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization</title><author>Samuelsson, Jörgen ; Leśko, Marek ; Enmark, Martin ; Högblom, Joakim ; Karlsson, Anders ; Kaczmarski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Empirical analysis</topic><topic>Energiteknik</topic><topic>Energy Technology</topic><topic>Equilibrium–dispersive model</topic><topic>Etiracetam</topic><topic>Feasibility studies</topic><topic>Global optimization</topic><topic>Kemi</topic><topic>Laboratories</topic><topic>Laboratory Medicine</topic><topic>Mathematical models</topic><topic>Omeprazole</topic><topic>Optimization of productivity</topic><topic>Original</topic><topic>Particle size</topic><topic>Pharmacy</topic><topic>Predictions</topic><topic>Preparative chromatography</topic><topic>Pressure drop</topic><topic>Productivity</topic><topic>Proteomics</topic><topic>Separation</topic><topic>Taguchi methods</topic><topic>Taguchi optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuelsson, Jörgen</creatorcontrib><creatorcontrib>Leśko, Marek</creatorcontrib><creatorcontrib>Enmark, Martin</creatorcontrib><creatorcontrib>Högblom, Joakim</creatorcontrib><creatorcontrib>Karlsson, Anders</creatorcontrib><creatorcontrib>Kaczmarski, Krzysztof</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Karlstads universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Karlstads universitet</collection><collection>SwePub Articles full text</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuelsson, Jörgen</au><au>Leśko, Marek</au><au>Enmark, Martin</au><au>Högblom, Joakim</au><au>Karlsson, Anders</au><au>Kaczmarski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><addtitle>Chromatographia</addtitle><date>2018</date><risdate>2018</risdate><volume>81</volume><issue>6</issue><spage>851</spage><epage>860</epage><pages>851-860</pages><issn>0009-5893</issn><issn>1612-1112</issn><eissn>1612-1112</eissn><abstract>The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after selecting particle size. As model compounds, we chose two chiral drugs for preparative separation: omeprazole and etiracetam. In each case, two maximum allowed pressure drops were assumed: 80 and 200 bar. The processes were numerically optimized (mechanistic modeling) with a general rate model using a global optimization method. The numerical predictions were experimentally verified at both analytical and pilot scales. The lower allowed pressure drop represents the use of standard equipment, while the higher allowed drop represents more modern equipment. For both compounds, maximum productivity was achieved using short columns packed with small-particle size packing materials. Increasing the allowed backpressure in the separation leads to an increased productivity and reduced solvent consumption. As advanced numerical calculations might not be available in the laboratory, we also investigated a statistically based approach, i.e., the Taguchi method (empirical modeling), for finding the optimal decision variables and compared it with advanced mechanistic modeling. The Taguchi method predicted that shorter columns packed with smaller particles would be preferred over longer columns packed with larger particles. We conclude that the simpler optimization tool, i.e., the Taguchi method, can be used to obtain “good enough” preparative separations, though for accurate processes, optimization, and to determine optimal operational conditions, classical numerical optimization is still necessary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29887619</pmid><doi>10.1007/s10337-018-3519-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1819-1709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-5893
ispartof Chromatographia, 2018, Vol.81 (6), p.851-860
issn 0009-5893
1612-1112
1612-1112
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kau_67311
source Springer Link
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Chromatography
Empirical analysis
Energiteknik
Energy Technology
Equilibrium–dispersive model
Etiracetam
Feasibility studies
Global optimization
Kemi
Laboratories
Laboratory Medicine
Mathematical models
Omeprazole
Optimization of productivity
Original
Particle size
Pharmacy
Predictions
Preparative chromatography
Pressure drop
Productivity
Proteomics
Separation
Taguchi methods
Taguchi optimization
title Optimizing Column Length and Particle Size in Preparative Batch Chromatography Using Enantiomeric Separations of Omeprazole and Etiracetam as Models: Feasibility of Taguchi Empirical Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Column%20Length%20and%20Particle%20Size%20in%20Preparative%20Batch%20Chromatography%20Using%20Enantiomeric%20Separations%20of%20Omeprazole%20and%20Etiracetam%20as%20Models:%20Feasibility%20of%20Taguchi%20Empirical%20Optimization&rft.jtitle=Chromatographia&rft.au=Samuelsson,%20J%C3%B6rgen&rft.date=2018&rft.volume=81&rft.issue=6&rft.spage=851&rft.epage=860&rft.pages=851-860&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-018-3519-z&rft_dat=%3Cproquest_swepu%3E2053286429%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-3b79f40b4175198eecc390eb7fd70afcab777ffb563c52b92ec18697cc2680863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046046539&rft_id=info:pmid/29887619&rfr_iscdi=true