Loading…
Dilute emulsions with surface tension
We consider an emulsion formed by two newtonian fluids in which one fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface tension. We consider both cases of droplets with fixed centers of mass and of convected droplets. In the non-dilute case, for spherical drop...
Saved in:
Published in: | Quarterly of applied mathematics 2016-01, Vol.74 (1), p.89-111 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a314t-2fbcefd827b8893c680c64232764b56403b482c548df4761978b74393d577cef3 |
---|---|
cites | |
container_end_page | 111 |
container_issue | 1 |
container_start_page | 89 |
container_title | Quarterly of applied mathematics |
container_volume | 74 |
creator | Nika, Grigor Vernescu, Bogdan |
description | We consider an emulsion formed by two newtonian fluids in which one fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface tension. We consider both cases of droplets with fixed centers of mass and of convected droplets. In the non-dilute case, for spherical droplets of radius aϵa_\epsilon of the same order as the period length ϵ\epsilon, the two models were studied by Lipton-Avellaneda (1990) and Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when the characteristic size of the droplets aϵa_\epsilon, of arbitrary shape, is much smaller than ϵ\epsilon. We study the limit behavior when ϵ→0\epsilon \to 0 in each of these two models. We establish a Brinkman type law for the critical size aϵ=O(ϵ3)a_\epsilon = O(\epsilon ^3) in the first case, whereas in the second case there is no “strange” term, and in the limit the flow is unperturbed by the droplets. |
doi_str_mv | 10.1090/qam/1403 |
format | article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kau_88399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26835280</jstor_id><sourcerecordid>26835280</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-2fbcefd827b8893c680c64232764b56403b482c548df4761978b74393d577cef3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRMFbBPyAERHBh7Lwfy9L6goIbFXfDJJnRqUlTZxKK_94pke5cXe493zlcDgDnCN4iqOD027RTRCE5ABliDBeUSnYIMggJKRhX78fgJMZVWpMKM3C18M3Q29y2QxN9t4751vefeRyCM5XNe7veXU_BkTNNtGd_cwJe7-9e5o_F8vnhaT5bFoYg2hfYlZV1tcSilFKRiktYcYoJFpyWjKevSipxxaisHRUcKSFLQYkiNRMiOckE3Iy5cWs3Q6k3wbcm_OjOeL3wbzPdhQ_9ZQYtJVEq4dcjXoUuxmDd3oCg3rWhUxt610ZCL0Z0Ffsu7DnMJWFYwqRfjrpp4_8pvxrZZhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dilute emulsions with surface tension</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Nika, Grigor ; Vernescu, Bogdan</creator><creatorcontrib>Nika, Grigor ; Vernescu, Bogdan</creatorcontrib><description>We consider an emulsion formed by two newtonian fluids in which one fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface tension. We consider both cases of droplets with fixed centers of mass and of convected droplets. In the non-dilute case, for spherical droplets of radius aϵa_\epsilon of the same order as the period length ϵ\epsilon, the two models were studied by Lipton-Avellaneda (1990) and Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when the characteristic size of the droplets aϵa_\epsilon, of arbitrary shape, is much smaller than ϵ\epsilon. We study the limit behavior when ϵ→0\epsilon \to 0 in each of these two models. We establish a Brinkman type law for the critical size aϵ=O(ϵ3)a_\epsilon = O(\epsilon ^3) in the first case, whereas in the second case there is no “strange” term, and in the limit the flow is unperturbed by the droplets.</description><identifier>ISSN: 0033-569X</identifier><identifier>ISSN: 1552-4485</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1403</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Brinkman equations ; emulsions ; G-convergence ; Matematik ; Mathematics ; Mosco-convergence ; Research article ; Stokes flow ; surface tension</subject><ispartof>Quarterly of applied mathematics, 2016-01, Vol.74 (1), p.89-111</ispartof><rights>Copyright 2015 Brown University</rights><rights>2015 Brown University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-2fbcefd827b8893c680c64232764b56403b482c548df4761978b74393d577cef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/qam/2016-74-01/S0033-569X-2015-01403-4/S0033-569X-2015-01403-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/qam/2016-74-01/S0033-569X-2015-01403-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,230,314,776,780,881,23303,27901,27902,58213,58446,77581,77591</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-88399$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nika, Grigor</creatorcontrib><creatorcontrib>Vernescu, Bogdan</creatorcontrib><title>Dilute emulsions with surface tension</title><title>Quarterly of applied mathematics</title><addtitle>Quart. Appl. Math</addtitle><description>We consider an emulsion formed by two newtonian fluids in which one fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface tension. We consider both cases of droplets with fixed centers of mass and of convected droplets. In the non-dilute case, for spherical droplets of radius aϵa_\epsilon of the same order as the period length ϵ\epsilon, the two models were studied by Lipton-Avellaneda (1990) and Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when the characteristic size of the droplets aϵa_\epsilon, of arbitrary shape, is much smaller than ϵ\epsilon. We study the limit behavior when ϵ→0\epsilon \to 0 in each of these two models. We establish a Brinkman type law for the critical size aϵ=O(ϵ3)a_\epsilon = O(\epsilon ^3) in the first case, whereas in the second case there is no “strange” term, and in the limit the flow is unperturbed by the droplets.</description><subject>Brinkman equations</subject><subject>emulsions</subject><subject>G-convergence</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Mosco-convergence</subject><subject>Research article</subject><subject>Stokes flow</subject><subject>surface tension</subject><issn>0033-569X</issn><issn>1552-4485</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRMFbBPyAERHBh7Lwfy9L6goIbFXfDJJnRqUlTZxKK_94pke5cXe493zlcDgDnCN4iqOD027RTRCE5ABliDBeUSnYIMggJKRhX78fgJMZVWpMKM3C18M3Q29y2QxN9t4751vefeRyCM5XNe7veXU_BkTNNtGd_cwJe7-9e5o_F8vnhaT5bFoYg2hfYlZV1tcSilFKRiktYcYoJFpyWjKevSipxxaisHRUcKSFLQYkiNRMiOckE3Iy5cWs3Q6k3wbcm_OjOeL3wbzPdhQ_9ZQYtJVEq4dcjXoUuxmDd3oCg3rWhUxt610ZCL0Z0Ffsu7DnMJWFYwqRfjrpp4_8pvxrZZhg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Nika, Grigor</creator><creator>Vernescu, Bogdan</creator><general>American Mathematical Society</general><general>Brown University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG3</scope></search><sort><creationdate>20160101</creationdate><title>Dilute emulsions with surface tension</title><author>Nika, Grigor ; Vernescu, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-2fbcefd827b8893c680c64232764b56403b482c548df4761978b74393d577cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brinkman equations</topic><topic>emulsions</topic><topic>G-convergence</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Mosco-convergence</topic><topic>Research article</topic><topic>Stokes flow</topic><topic>surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nika, Grigor</creatorcontrib><creatorcontrib>Vernescu, Bogdan</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Karlstads universitet</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nika, Grigor</au><au>Vernescu, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilute emulsions with surface tension</atitle><jtitle>Quarterly of applied mathematics</jtitle><stitle>Quart. Appl. Math</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>74</volume><issue>1</issue><spage>89</spage><epage>111</epage><pages>89-111</pages><issn>0033-569X</issn><issn>1552-4485</issn><eissn>1552-4485</eissn><abstract>We consider an emulsion formed by two newtonian fluids in which one fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface tension. We consider both cases of droplets with fixed centers of mass and of convected droplets. In the non-dilute case, for spherical droplets of radius aϵa_\epsilon of the same order as the period length ϵ\epsilon, the two models were studied by Lipton-Avellaneda (1990) and Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when the characteristic size of the droplets aϵa_\epsilon, of arbitrary shape, is much smaller than ϵ\epsilon. We study the limit behavior when ϵ→0\epsilon \to 0 in each of these two models. We establish a Brinkman type law for the critical size aϵ=O(ϵ3)a_\epsilon = O(\epsilon ^3) in the first case, whereas in the second case there is no “strange” term, and in the limit the flow is unperturbed by the droplets.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/qam/1403</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 2016-01, Vol.74 (1), p.89-111 |
issn | 0033-569X 1552-4485 1552-4485 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kau_88399 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible) |
subjects | Brinkman equations emulsions G-convergence Matematik Mathematics Mosco-convergence Research article Stokes flow surface tension |
title | Dilute emulsions with surface tension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilute%20emulsions%20with%20surface%20tension&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=Nika,%20Grigor&rft.date=2016-01-01&rft.volume=74&rft.issue=1&rft.spage=89&rft.epage=111&rft.pages=89-111&rft.issn=0033-569X&rft.eissn=1552-4485&rft_id=info:doi/10.1090/qam/1403&rft_dat=%3Cjstor_swepu%3E26835280%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a314t-2fbcefd827b8893c680c64232764b56403b482c548df4761978b74393d577cef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26835280&rfr_iscdi=true |