Loading…
Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
We have investigated multi-temporal polarimetric synthetic aperture radar (SAR) data for urban land-cover classification using an object-based support vector machine (SVM) in combinations of rules. Six-date RADARSAT-2 high-resolution polarimetric SAR data in both ascending and descending passes were...
Saved in:
Published in: | International journal of remote sensing 2013-01, Vol.34 (1), p.1-26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have investigated multi-temporal polarimetric synthetic aperture radar (SAR) data for urban land-cover classification using an object-based support vector machine (SVM) in combinations of rules. Six-date RADARSAT-2 high-resolution polarimetric SAR data in both ascending and descending passes were acquired in the rural–urban fringe of the Greater Toronto Area during the summer of 2008. The major land-use/land-cover classes include high-density residential areas, low-density residential areas, industrial and commercial areas, construction sites, parks, golf courses, forests, pasture, water, and two types of agricultural crops. Various polarimetric SAR parameters were evaluated for urban land-cover mapping and they include the parameters from Pauli, Freeman and Cloude–Pottier decompositions, the coherency matrix, intensities of each polarization, and their logarithm forms. The multi-temporal SAR polarimetric features were classified first using an SVM classifier. Then specific rules were developed to improve the SVM classification results by extracting major roads and streets using shape features and contextual information. For the comparison of the polarimetric SAR parameters, the best classification performance was achieved using the compressed logarithmic filtered Pauli parameters. For the evaluation of the multi-temporal SAR data set, the best classification result was achieved using all six-date data (kappa = 0.91), while very good classification results (kappa = 0.86) were achieved using only three-date polarimetric SAR data. The results indicate that the combination of both the ascending and the descending polarimetric SAR data with an appropriate temporal span is suitable for urban land-cover mapping. |
---|---|
ISSN: | 1366-5901 0143-1161 1366-5901 |
DOI: | 10.1080/01431161.2012.700133 |