Loading…
A deformation mechanism map for polycrystals modeled using strain gradient plasticity and interfaces that slide and separate
Small scale strain gradient plasticity is coupled with a model of grain boundaries that take into account the energetic state of a plastically strained boundary and the slip and separation between neighboring grains. A microstructure of hexagonal grains is investigated using a plane strain finite el...
Saved in:
Published in: | International journal of plasticity 2013-04, Vol.43, p.177-195 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Small scale strain gradient plasticity is coupled with a model of grain boundaries that take into account the energetic state of a plastically strained boundary and the slip and separation between neighboring grains. A microstructure of hexagonal grains is investigated using a plane strain finite element model. The results show that three different microstructural deformation mechanisms can be identified. The standard plasticity case in which the material behaves as expected from coarse grained experiments, the nonlocal plasticity region where size of the microstructure compared to some intrinsic length scale enhances the yield stress and a third mechanism, active only in very fine grained microstructures, where the grains deform mainly in relative sliding and separation. |
---|---|
ISSN: | 0749-6419 1879-2154 1879-2154 |
DOI: | 10.1016/j.ijplas.2012.11.010 |