Loading…
Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells
A pair of new donor−π–acceptor dyes that absorb toward the red region of the visible spectrum (CAD 1 and CAD 2) utilizing indolium cationic acceptor units have been synthesized for use in p-type dye-sensitized solar cells (p-DSC). Their optical and electrochemical properties were determined experime...
Saved in:
Published in: | Journal of physical chemistry. C 2014-07, Vol.118 (30), p.16536-16546 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A pair of new donor−π–acceptor dyes that absorb toward the red region of the visible spectrum (CAD 1 and CAD 2) utilizing indolium cationic acceptor units have been synthesized for use in p-type dye-sensitized solar cells (p-DSC). Their optical and electrochemical properties were determined experimentally, including application of ultrafast transient absorption and time-resolved infrared spectroscopies. Our results are supported by computational modeling. NiO-based p-DSCs with CAD 1 and CAD 2 gave short-circuit photocurrent densities of 3.6 and 3.3 mA cm–2, respectively, which are substantially higher than that of any previous red-absorbing p-DSC. These results are a step toward tandem dye-sensitized solar cells that absorb higher-energy photons at the TiO2 anode and lower-energy photons at the NiO cathode. Routes to further improve the efficiency of NiO DSCS are also discussed. |
---|---|
ISSN: | 1932-7447 1932-7455 1932-7455 |
DOI: | 10.1021/jp4119937 |