Loading…
Tollmien–Schlichting wave growth over spanwise-periodic surface patterns
A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a ran...
Saved in:
Published in: | Journal of fluid mechanics 2014-09, Vol.754, p.39-74 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13 |
container_end_page | 74 |
container_issue | |
container_start_page | 39 |
container_title | Journal of fluid mechanics |
container_volume | 754 |
creator | Downs, Robert S. Fransson, Jens H. M. |
description | A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes. |
doi_str_mv | 10.1017/jfm.2014.377 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_152573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_377</cupid><sourcerecordid>1642257515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALUYmlcOMBIiEkDmTxOI4dH6tCC6gSBwpXy_GOd70kcbCTrrj1HfqGPEm97KpCiAMny9Lnfzz6CXkBdAkU5Nut65eMAl9WUj4iC-BClVLw-jFZUMpYCcDoE_I0pS2lUFElF-TTdei63uPw6_bui9103m4mP6yLnbnBYh3DbtoU4QZjkUYz7HzCcsTow8rbIs3RGYvFaKYJ45CekRNnuoTPj-cp-Xrx_vr8Q3n1-fLj-dlVaXklphKobFvHrXOVarjDxtGWI1QryXMaAFSNaqhQFFCwRlDHFap8d8AQWYanpDzkph2Oc6vH6HsTf-pgvH7nv53pENf6-7TRULNaVtm_Pvgxhh8zpkn3PlnsOjNgmJMGwVmGNdT_QaEBrthv-vIvug1zHPLieS5XNVDW0KzeHJSNIaWI7uG3QPW-M5070_vOdO4s81fHUJOs6Vw0g_Xp4Q1rpKiF2K-0PMaavo1-tcY_pv8r-B5ns6Xs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549510280</pqid></control><display><type>article</type><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><source>Cambridge Journals Online</source><creator>Downs, Robert S. ; Fransson, Jens H. M.</creator><creatorcontrib>Downs, Robert S. ; Fransson, Jens H. M.</creatorcontrib><description>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</description><identifier>ISSN: 0022-1120</identifier><identifier>ISSN: 1469-7645</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.377</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitudes ; Arrays ; Boundaries ; Boundary layer ; Boundary layers ; boundary-layer control ; boundary-layer stability ; Construction ; Delay ; Disturbances ; Drag reduction ; Exact sciences and technology ; Flow control ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Physics ; Roughness ; Surface roughness ; Turbulence control ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2014-09, Vol.754, p.39-74</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</citedby><cites>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014003772/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,72730</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28765663$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152573$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Downs, Robert S.</creatorcontrib><creatorcontrib>Fransson, Jens H. M.</creatorcontrib><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</description><subject>Amplitudes</subject><subject>Arrays</subject><subject>Boundaries</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>boundary-layer control</subject><subject>boundary-layer stability</subject><subject>Construction</subject><subject>Delay</subject><subject>Disturbances</subject><subject>Drag reduction</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Roughness</subject><subject>Surface roughness</subject><subject>Turbulence control</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0cFu1DAQBmALUYmlcOMBIiEkDmTxOI4dH6tCC6gSBwpXy_GOd70kcbCTrrj1HfqGPEm97KpCiAMny9Lnfzz6CXkBdAkU5Nut65eMAl9WUj4iC-BClVLw-jFZUMpYCcDoE_I0pS2lUFElF-TTdei63uPw6_bui9103m4mP6yLnbnBYh3DbtoU4QZjkUYz7HzCcsTow8rbIs3RGYvFaKYJ45CekRNnuoTPj-cp-Xrx_vr8Q3n1-fLj-dlVaXklphKobFvHrXOVarjDxtGWI1QryXMaAFSNaqhQFFCwRlDHFap8d8AQWYanpDzkph2Oc6vH6HsTf-pgvH7nv53pENf6-7TRULNaVtm_Pvgxhh8zpkn3PlnsOjNgmJMGwVmGNdT_QaEBrthv-vIvug1zHPLieS5XNVDW0KzeHJSNIaWI7uG3QPW-M5070_vOdO4s81fHUJOs6Vw0g_Xp4Q1rpKiF2K-0PMaavo1-tcY_pv8r-B5ns6Xs</recordid><startdate>20140910</startdate><enddate>20140910</enddate><creator>Downs, Robert S.</creator><creator>Fransson, Jens H. M.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20140910</creationdate><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><author>Downs, Robert S. ; Fransson, Jens H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Arrays</topic><topic>Boundaries</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>boundary-layer control</topic><topic>boundary-layer stability</topic><topic>Construction</topic><topic>Delay</topic><topic>Disturbances</topic><topic>Drag reduction</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Roughness</topic><topic>Surface roughness</topic><topic>Turbulence control</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Downs, Robert S.</creatorcontrib><creatorcontrib>Fransson, Jens H. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downs, Robert S.</au><au>Fransson, Jens H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-09-10</date><risdate>2014</risdate><volume>754</volume><spage>39</spage><epage>74</epage><pages>39-74</pages><issn>0022-1120</issn><issn>1469-7645</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.377</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2014-09, Vol.754, p.39-74 |
issn | 0022-1120 1469-7645 1469-7645 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_152573 |
source | Cambridge Journals Online |
subjects | Amplitudes Arrays Boundaries Boundary layer Boundary layers boundary-layer control boundary-layer stability Construction Delay Disturbances Drag reduction Exact sciences and technology Flow control Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Physics Roughness Surface roughness Turbulence control Turbulent flows, convection, and heat transfer |
title | Tollmien–Schlichting wave growth over spanwise-periodic surface patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tollmien%E2%80%93Schlichting%20wave%20growth%20over%20spanwise-periodic%20surface%20patterns&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Downs,%20Robert%20S.&rft.date=2014-09-10&rft.volume=754&rft.spage=39&rft.epage=74&rft.pages=39-74&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.377&rft_dat=%3Cproquest_swepu%3E1642257515%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549510280&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_377&rfr_iscdi=true |