Loading…

Tollmien–Schlichting wave growth over spanwise-periodic surface patterns

A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a ran...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2014-09, Vol.754, p.39-74
Main Authors: Downs, Robert S., Fransson, Jens H. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13
cites cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13
container_end_page 74
container_issue
container_start_page 39
container_title Journal of fluid mechanics
container_volume 754
creator Downs, Robert S.
Fransson, Jens H. M.
description A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.
doi_str_mv 10.1017/jfm.2014.377
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_152573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_377</cupid><sourcerecordid>1642257515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALUYmlcOMBIiEkDmTxOI4dH6tCC6gSBwpXy_GOd70kcbCTrrj1HfqGPEm97KpCiAMny9Lnfzz6CXkBdAkU5Nut65eMAl9WUj4iC-BClVLw-jFZUMpYCcDoE_I0pS2lUFElF-TTdei63uPw6_bui9103m4mP6yLnbnBYh3DbtoU4QZjkUYz7HzCcsTow8rbIs3RGYvFaKYJ45CekRNnuoTPj-cp-Xrx_vr8Q3n1-fLj-dlVaXklphKobFvHrXOVarjDxtGWI1QryXMaAFSNaqhQFFCwRlDHFap8d8AQWYanpDzkph2Oc6vH6HsTf-pgvH7nv53pENf6-7TRULNaVtm_Pvgxhh8zpkn3PlnsOjNgmJMGwVmGNdT_QaEBrthv-vIvug1zHPLieS5XNVDW0KzeHJSNIaWI7uG3QPW-M5070_vOdO4s81fHUJOs6Vw0g_Xp4Q1rpKiF2K-0PMaavo1-tcY_pv8r-B5ns6Xs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549510280</pqid></control><display><type>article</type><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><source>Cambridge Journals Online</source><creator>Downs, Robert S. ; Fransson, Jens H. M.</creator><creatorcontrib>Downs, Robert S. ; Fransson, Jens H. M.</creatorcontrib><description>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</description><identifier>ISSN: 0022-1120</identifier><identifier>ISSN: 1469-7645</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.377</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitudes ; Arrays ; Boundaries ; Boundary layer ; Boundary layers ; boundary-layer control ; boundary-layer stability ; Construction ; Delay ; Disturbances ; Drag reduction ; Exact sciences and technology ; Flow control ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Physics ; Roughness ; Surface roughness ; Turbulence control ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2014-09, Vol.754, p.39-74</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</citedby><cites>FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014003772/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,72730</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28765663$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152573$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Downs, Robert S.</creatorcontrib><creatorcontrib>Fransson, Jens H. M.</creatorcontrib><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</description><subject>Amplitudes</subject><subject>Arrays</subject><subject>Boundaries</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>boundary-layer control</subject><subject>boundary-layer stability</subject><subject>Construction</subject><subject>Delay</subject><subject>Disturbances</subject><subject>Drag reduction</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Roughness</subject><subject>Surface roughness</subject><subject>Turbulence control</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0cFu1DAQBmALUYmlcOMBIiEkDmTxOI4dH6tCC6gSBwpXy_GOd70kcbCTrrj1HfqGPEm97KpCiAMny9Lnfzz6CXkBdAkU5Nut65eMAl9WUj4iC-BClVLw-jFZUMpYCcDoE_I0pS2lUFElF-TTdei63uPw6_bui9103m4mP6yLnbnBYh3DbtoU4QZjkUYz7HzCcsTow8rbIs3RGYvFaKYJ45CekRNnuoTPj-cp-Xrx_vr8Q3n1-fLj-dlVaXklphKobFvHrXOVarjDxtGWI1QryXMaAFSNaqhQFFCwRlDHFap8d8AQWYanpDzkph2Oc6vH6HsTf-pgvH7nv53pENf6-7TRULNaVtm_Pvgxhh8zpkn3PlnsOjNgmJMGwVmGNdT_QaEBrthv-vIvug1zHPLieS5XNVDW0KzeHJSNIaWI7uG3QPW-M5070_vOdO4s81fHUJOs6Vw0g_Xp4Q1rpKiF2K-0PMaavo1-tcY_pv8r-B5ns6Xs</recordid><startdate>20140910</startdate><enddate>20140910</enddate><creator>Downs, Robert S.</creator><creator>Fransson, Jens H. M.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20140910</creationdate><title>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</title><author>Downs, Robert S. ; Fransson, Jens H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Arrays</topic><topic>Boundaries</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>boundary-layer control</topic><topic>boundary-layer stability</topic><topic>Construction</topic><topic>Delay</topic><topic>Disturbances</topic><topic>Drag reduction</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Roughness</topic><topic>Surface roughness</topic><topic>Turbulence control</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Downs, Robert S.</creatorcontrib><creatorcontrib>Fransson, Jens H. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downs, Robert S.</au><au>Fransson, Jens H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tollmien–Schlichting wave growth over spanwise-periodic surface patterns</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-09-10</date><risdate>2014</risdate><volume>754</volume><spage>39</spage><epage>74</epage><pages>39-74</pages><issn>0022-1120</issn><issn>1469-7645</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A novel type of surface roughness is deployed in a zero-pressure-gradient boundary layer with the goal of delaying the onset of laminar-to-turbulent transition for drag reduction purposes. This proof-of-concept experiment relies on forcing phase-triggered Tollmien–Schlichting (TS) waves across a range of initial amplitudes to produce amplified boundary-layer disturbances in a controlled and repeatable manner. Building on earlier work demonstrating attenuation of forced disturbances and delay of transition with spanwise arrays of discrete roughness and miniature vortex generators (MVGs), the present work seeks a roughness shape which might find success in a wider range of flows. Toward that end, streamwise-elongated humps are regularly spaced in the spanwise direction to form a wavy wall. By direct modulation of the mean flow, growth rates of the forced disturbances are increased or decreased, depending on the roughness configuration. Boundary-layer velocity measurements with hot-wire probes have been performed in a parametric study of the effects of roughness-field geometry and forcing amplitude on TS-wave growth and transition. The roughness field proves detrimental to passive flow control efforts in some configurations, while a reduction in the TS-wave amplitudes compared with the smooth-wall reference case is observed at other conditions. Substantial delays in the onset of transition are demonstrated when TS waves are forced with large amplitudes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.377</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-09, Vol.754, p.39-74
issn 0022-1120
1469-7645
1469-7645
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_152573
source Cambridge Journals Online
subjects Amplitudes
Arrays
Boundaries
Boundary layer
Boundary layers
boundary-layer control
boundary-layer stability
Construction
Delay
Disturbances
Drag reduction
Exact sciences and technology
Flow control
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Physics
Roughness
Surface roughness
Turbulence control
Turbulent flows, convection, and heat transfer
title Tollmien–Schlichting wave growth over spanwise-periodic surface patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tollmien%E2%80%93Schlichting%20wave%20growth%20over%20spanwise-periodic%20surface%20patterns&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Downs,%20Robert%20S.&rft.date=2014-09-10&rft.volume=754&rft.spage=39&rft.epage=74&rft.pages=39-74&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.377&rft_dat=%3Cproquest_swepu%3E1642257515%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-107bbf4cff3984fe8f0b4e13d74ace111389806901e62860f49e9069f12ee2e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549510280&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_377&rfr_iscdi=true