Loading…

Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows

Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2015-03, Vol.766, p.104-128
Main Authors: Babler, Matthaus U., Biferale, Luca, Brandt, Luca, Feudel, Ulrike, Guseva, Ksenia, Lanotte, Alessandra S., Marchioli, Cristian, Picano, Francesco, Sardina, Gaetano, Soldati, Alfredo, Toschi, Federico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303
cites cdi_FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303
container_end_page 128
container_issue
container_start_page 104
container_title Journal of fluid mechanics
container_volume 766
creator Babler, Matthaus U.
Biferale, Luca
Brandt, Luca
Feudel, Ulrike
Guseva, Ksenia
Lanotte, Alessandra S.
Marchioli, Cristian
Picano, Francesco
Sardina, Gaetano
Soldati, Alfredo
Toschi, Federico
description Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$ , with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$ , which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.
doi_str_mv 10.1017/jfm.2015.13
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_161602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_13</cupid><sourcerecordid>1992584743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303</originalsourceid><addsrcrecordid>eNptkF1LwzAYhYMoOKdX_oGAl9L5vknXmMsxP2HohR-3IW2T2q1tZtIw_Pd2zK8Lrw4HHh4Oh5BThAkCioulbScMcDpBvkdGmGYyEVk63ScjAMYSRAaH5CiEJQBykGJEnh5ia3xd6IaGuo2N7mvXBeos1VXlTaV7Q3Nv9Cquad3R3MWuNCXVXUlj99366PPYmK6ntnGbcEwOrG6COfnKMXm5uX6e3yWLx9v7-WyRFJyLPpGSCxQ8lTkYluvSsgKBlZrxElMhYGhWYMYlK9FkBhAtSmA5l1MLmgMfk2TnDRuzjrla-7rV_kM5Xaur-nWmnK_Uqn9TmGEGbODPdvzau_doQq-WLvpumKhQSja9TEXKB-p8RxXeheCN_fEiqO3LanhZbV9WyH83FLrNfV1W5o_0H_4TWQB-Xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992584743</pqid></control><display><type>article</type><title>Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows</title><source>Cambridge University Press</source><creator>Babler, Matthaus U. ; Biferale, Luca ; Brandt, Luca ; Feudel, Ulrike ; Guseva, Ksenia ; Lanotte, Alessandra S. ; Marchioli, Cristian ; Picano, Francesco ; Sardina, Gaetano ; Soldati, Alfredo ; Toschi, Federico</creator><creatorcontrib>Babler, Matthaus U. ; Biferale, Luca ; Brandt, Luca ; Feudel, Ulrike ; Guseva, Ksenia ; Lanotte, Alessandra S. ; Marchioli, Cristian ; Picano, Francesco ; Sardina, Gaetano ; Soldati, Alfredo ; Toschi, Federico</creatorcontrib><description>Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$ , with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$ , which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.</description><identifier>ISSN: 0022-1120</identifier><identifier>ISSN: 1469-7645</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.13</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aggregates ; Boundary layers ; Breakup ; breakup/coalescence ; Channel flow ; Computational fluid dynamics ; Computer simulation ; Configurations ; Energy dissipation ; Energy exchange ; Fluids ; Hydrodynamics ; Inhomogeneity ; Isotropic turbulence ; multiphase and particle-laden flows ; Physics ; Scaling ; Studies ; Thresholds ; Turbulence ; Turbulent flow ; turbulent flows ; Variation</subject><ispartof>Journal of fluid mechanics, 2015-03, Vol.766, p.104-128</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303</citedby><cites>FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015000130/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,72703</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161602$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Babler, Matthaus U.</creatorcontrib><creatorcontrib>Biferale, Luca</creatorcontrib><creatorcontrib>Brandt, Luca</creatorcontrib><creatorcontrib>Feudel, Ulrike</creatorcontrib><creatorcontrib>Guseva, Ksenia</creatorcontrib><creatorcontrib>Lanotte, Alessandra S.</creatorcontrib><creatorcontrib>Marchioli, Cristian</creatorcontrib><creatorcontrib>Picano, Francesco</creatorcontrib><creatorcontrib>Sardina, Gaetano</creatorcontrib><creatorcontrib>Soldati, Alfredo</creatorcontrib><creatorcontrib>Toschi, Federico</creatorcontrib><title>Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$ , with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$ , which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.</description><subject>Aggregates</subject><subject>Boundary layers</subject><subject>Breakup</subject><subject>breakup/coalescence</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Fluids</subject><subject>Hydrodynamics</subject><subject>Inhomogeneity</subject><subject>Isotropic turbulence</subject><subject>multiphase and particle-laden flows</subject><subject>Physics</subject><subject>Scaling</subject><subject>Studies</subject><subject>Thresholds</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>turbulent flows</subject><subject>Variation</subject><issn>0022-1120</issn><issn>1469-7645</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAYhYMoOKdX_oGAl9L5vknXmMsxP2HohR-3IW2T2q1tZtIw_Pd2zK8Lrw4HHh4Oh5BThAkCioulbScMcDpBvkdGmGYyEVk63ScjAMYSRAaH5CiEJQBykGJEnh5ia3xd6IaGuo2N7mvXBeos1VXlTaV7Q3Nv9Cquad3R3MWuNCXVXUlj99366PPYmK6ntnGbcEwOrG6COfnKMXm5uX6e3yWLx9v7-WyRFJyLPpGSCxQ8lTkYluvSsgKBlZrxElMhYGhWYMYlK9FkBhAtSmA5l1MLmgMfk2TnDRuzjrla-7rV_kM5Xaur-nWmnK_Uqn9TmGEGbODPdvzau_doQq-WLvpumKhQSja9TEXKB-p8RxXeheCN_fEiqO3LanhZbV9WyH83FLrNfV1W5o_0H_4TWQB-Xg</recordid><startdate>20150310</startdate><enddate>20150310</enddate><creator>Babler, Matthaus U.</creator><creator>Biferale, Luca</creator><creator>Brandt, Luca</creator><creator>Feudel, Ulrike</creator><creator>Guseva, Ksenia</creator><creator>Lanotte, Alessandra S.</creator><creator>Marchioli, Cristian</creator><creator>Picano, Francesco</creator><creator>Sardina, Gaetano</creator><creator>Soldati, Alfredo</creator><creator>Toschi, Federico</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20150310</creationdate><title>Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows</title><author>Babler, Matthaus U. ; Biferale, Luca ; Brandt, Luca ; Feudel, Ulrike ; Guseva, Ksenia ; Lanotte, Alessandra S. ; Marchioli, Cristian ; Picano, Francesco ; Sardina, Gaetano ; Soldati, Alfredo ; Toschi, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aggregates</topic><topic>Boundary layers</topic><topic>Breakup</topic><topic>breakup/coalescence</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Fluids</topic><topic>Hydrodynamics</topic><topic>Inhomogeneity</topic><topic>Isotropic turbulence</topic><topic>multiphase and particle-laden flows</topic><topic>Physics</topic><topic>Scaling</topic><topic>Studies</topic><topic>Thresholds</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>turbulent flows</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babler, Matthaus U.</creatorcontrib><creatorcontrib>Biferale, Luca</creatorcontrib><creatorcontrib>Brandt, Luca</creatorcontrib><creatorcontrib>Feudel, Ulrike</creatorcontrib><creatorcontrib>Guseva, Ksenia</creatorcontrib><creatorcontrib>Lanotte, Alessandra S.</creatorcontrib><creatorcontrib>Marchioli, Cristian</creatorcontrib><creatorcontrib>Picano, Francesco</creatorcontrib><creatorcontrib>Sardina, Gaetano</creatorcontrib><creatorcontrib>Soldati, Alfredo</creatorcontrib><creatorcontrib>Toschi, Federico</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babler, Matthaus U.</au><au>Biferale, Luca</au><au>Brandt, Luca</au><au>Feudel, Ulrike</au><au>Guseva, Ksenia</au><au>Lanotte, Alessandra S.</au><au>Marchioli, Cristian</au><au>Picano, Francesco</au><au>Sardina, Gaetano</au><au>Soldati, Alfredo</au><au>Toschi, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-03-10</date><risdate>2015</risdate><volume>766</volume><spage>104</spage><epage>128</epage><pages>104-128</pages><issn>0022-1120</issn><issn>1469-7645</issn><eissn>1469-7645</eissn><abstract>Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$ , with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$ , which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.13</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-03, Vol.766, p.104-128
issn 0022-1120
1469-7645
1469-7645
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_161602
source Cambridge University Press
subjects Aggregates
Boundary layers
Breakup
breakup/coalescence
Channel flow
Computational fluid dynamics
Computer simulation
Configurations
Energy dissipation
Energy exchange
Fluids
Hydrodynamics
Inhomogeneity
Isotropic turbulence
multiphase and particle-laden flows
Physics
Scaling
Studies
Thresholds
Turbulence
Turbulent flow
turbulent flows
Variation
title Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20aggregate%20breakup%20in%20bounded%20and%20unbounded%20turbulent%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Babler,%20Matthaus%20U.&rft.date=2015-03-10&rft.volume=766&rft.spage=104&rft.epage=128&rft.pages=104-128&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.13&rft_dat=%3Cproquest_swepu%3E1992584743%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-993717349b0e2badf2c102da23d14770c10f716392d1e6e011f1902b395f0a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992584743&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_13&rfr_iscdi=true