Loading…

Structural and ferromagnetic properties of Cu-doped GaN

The wurtzite polymorph of GaN was calcined with CuO in flowing nitrogen. As a result of this processing, both superconducting quantum interference device magnetometry and ferromagnetic resonance studies showed ferromagnetism in these samples at room temperature. These magnetic results are qualitativ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2007-05, Vol.22 (5), p.1396-1405
Main Authors: Seipel, B., Erni, R., Gupta, Amita, Li, C., Owens, F.J., Rao, K.V., Browning, N.D., Moeck, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wurtzite polymorph of GaN was calcined with CuO in flowing nitrogen. As a result of this processing, both superconducting quantum interference device magnetometry and ferromagnetic resonance studies showed ferromagnetism in these samples at room temperature. These magnetic results are qualitatively consistent with very recent first-principle calculations [Wu et al., Appl. Phys. Lett.89, 062505 (2006)] that predict ferromagnetism in Cu-doped GaN. We focus in this paper on analyzing changes in the GaN atomic and electronic structure due to calcination with CuO using multiple analytical methods. Quantitative powder x-ray diffraction (XRD) showed changes in the lattice constants of the GaN due to the incorporation of copper (and possibly oxygen). Energy-dispersive x-ray spectroscopy proved the incorporation of copper into the GaN crystal structure. Electron-gun monochromated electron energy loss spectroscopy showed CuO calcinations-induced GaN band gap changes and indicated changes in the atomic arrangements due to the calcination process. The fine structure of the N K-edge showed differences in the peak ratios with respect to higher nominal CuO contents, corresponding to an increase in the c-lattice constant as confirmed by XRD.
ISSN:0884-2914
2044-5326
2044-5326
DOI:10.1557/jmr.2007.0168