Loading…
Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers
Pressure fluctuations are an important ingredient in turbulence, e.g. in the pressure strain terms which redistribute turbulence among the different fluctuating velocity components. The variation of the pressure fluctuations inside a turbulent boundary layer has hitherto been out of reach of experim...
Saved in:
Published in: | Journal of fluid mechanics 2007-08, Vol.585, p.1-40 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pressure fluctuations are an important ingredient in turbulence, e.g. in the pressure strain terms which redistribute turbulence among the different fluctuating velocity components. The variation of the pressure fluctuations inside a turbulent boundary layer has hitherto been out of reach of experimental determination. The mechanisms of non-local pressure-related coupling between the different regions of the boundary layer have therefore remained poorly understood. One reason for this is the difficulty inherent in measuring the fluctuating pressure. We have developed a new technique to measure pressure fluctuations. In the present study, both mean and fluctuating pressure, wall pressure, and streamwise velocity have been measured simultaneously in turbulent boundary layers up to Reynolds numbers based on the momentum thickness Rθ ≃ 20000. Results on mean and fluctuation distributions, spectra, Reynolds number dependence, and correlation functions are reported. Also, an attempt is made to test, for the first time, the existence of Kolmogorov's -7/3 power-law scaling of the pressure spectrum in the limit of high Reynolds numbers in a turbulent boundary layer. |
---|---|
ISSN: | 0022-1120 1469-7645 1469-7645 |
DOI: | 10.1017/S0022112007006076 |