Loading…
Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors
Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise t...
Saved in:
Published in: | American journal of physiology. Heart and circulatory physiology 2015-06, Vol.308 (12), p.H1540-H1546 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 12%) after intravenous administration of 1) no drugs (Cont), 2) propranolol (Prop), 3) glycopyrrolate (Glyc), or 4) Prop + Glyc. HR increased with exercise in all drug conditions (P < 0.001) but was always higher at a given workload in hypoxia than normoxia (P < 0.001). Averaged over all workloads, the difference between hypoxia and normoxia was 19.8 ± 13.8 beats/min during Cont and similar (17.2 ± 7.7 beats/min, P = 0.95) during Prop but smaller (P < 0.001) during Glyc and Prop + Glyc (9.8 ± 9.6 and 8.1 ± 7.6 beats/min, respectively). Cardiac output was enhanced by hypoxia (P < 0.002) to an extent that was similar between Cont, Glyc, and Prop + Glyc (2.3 ± 1.9, 1.7 ± 1.8, and 2.3 ± 1.2 l/min, respectively, P > 0.4) but larger during Prop (3.4 ± 1.6 l/min, P = 0.004). Our results demonstrate that the tachycardic effect of hypoxia during exercise partially relies on vagal withdrawal. Conversely, sympathoexcitation either does not contribute or increases heart rate through mechanisms other than β-adrenergic transmission. A potential candidate is α-adrenergic transmission, which could also explain why a tachycardic effect of hypoxia persists during combined β-adrenergic and muscarinic receptor inhibition. |
---|---|
ISSN: | 0363-6135 1522-1539 1522-1539 |
DOI: | 10.1152/ajpheart.00861.2014 |