Loading…
Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter
We experimentally demonstrate a microelectromechanically (MEMS) tunable photonic ring resonator add-drop filter, fabricated in a simple silicon-on-insulator (SOI) based process. The device uses electrostatic parallel plate actuation to perturb the evanescent field of a silicon waveguide, and achieve...
Saved in:
Published in: | Optics letters 2015-08, Vol.40 (15), p.3556-3559 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We experimentally demonstrate a microelectromechanically (MEMS) tunable photonic ring resonator add-drop filter, fabricated in a simple silicon-on-insulator (SOI) based process. The device uses electrostatic parallel plate actuation to perturb the evanescent field of a silicon waveguide, and achieves a 530 pm resonance wavelength tuning, i.e., more than a fourfold improvement compared to previous MEMS tunable ring resonator add-drop filters. Moreover, our device has a static power consumption below 100 nW, and a tuning rate of -62 pm/V, i.e., the highest reported rate for electrostatic tuning of ring resonator add-drop filters. |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.40.003556 |