Loading…
Applying Geostatistical Analysis to Crime Data: Car-Related Thefts in the Baltic States
Geostatistical methods have rarely been applied to area-level offense data. This article demonstrates their potential for improving the interpretation and understanding of crime patterns using previously analyzed data about car-related thefts for Estonia, Latvia, and Lithuania in 2000. The variogram...
Saved in:
Published in: | Geographical analysis 2010, Vol.42 (1), p.53-77 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Geostatistical methods have rarely been applied to area-level offense data. This article demonstrates their potential for improving the interpretation and understanding of crime patterns using previously analyzed data about car-related thefts for Estonia, Latvia, and Lithuania in 2000. The variogram is used to inform about the scales of variation in offense, social, and economic data. Area-to-area and area-to-point Poisson kriging are used to filter the noise caused by the small number problem. The latter is also used to produce continuous maps of the estimated crime risk (expected number of crimes per 10,000 habitants), thereby reducing the visual bias of large spatial units. In seeking to detect the most likely crime clusters, the uncertainty attached to crime risk estimates is handled through a local cluster analysis using stochastic simulation. Factorial kriging analysis is used to estimate the local- and regional-scale spatial components of the crime risk and explanatory variables. Then regression modeling is used to determine which factors are associated with the risk of car-related theft at different scales. |
---|---|
ISSN: | 0016-7363 1538-4632 1538-4632 |
DOI: | 10.1111/j.1538-4632.2010.00782.x |