Loading…
Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide
A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polar...
Saved in:
Published in: | IEEE journal of selected topics in quantum electronics 2010-01, Vol.16 (1), p.250-256 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083 |
container_end_page | 256 |
container_issue | 1 |
container_start_page | 250 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 16 |
creator | Gao, Shiming Zhang, Xingzhi Li, Zhiqiang He, Sailing |
description | A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide. |
doi_str_mv | 10.1109/JSTQE.2009.2034755 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_19188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5398864</ieee_id><sourcerecordid>1770349993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSNEJUrhC8DF4gIHUmzHf4-rpUBRVYraAjfLm4xTl6wd7KQV_fT1dqsKcYDLeDT6vSd7_KrqBcH7hGD97vPp2deDfYqxLqVhkvNH1S7hXNWMM_q49FjKmgr840n1NOdLjLFiCu9W40kcbPI3dvIx1IehgxFKCRP6bq9ggNBPF2gZwxWkXAh0nn3okQ1oEfoBuvpPOTqZ1yPyAVl06gfflsmxDfHaJ7hz62ffwbNqx9khw_P7c686_3BwtvxUH335eLhcHNUto2qqVwIUt9RRJ8utW6YcCKKstKXhuuVcNKsVCAm2c6p1grpGtKqjShKHLVbNXvV265uvYZxXZkx-bdNvE6037_23hYmpNz-nC0M0URv89RYfU_w1Q57M2ucWhsEGiHM2SvJiKgj9LylZIynTtCnkm3-SRMryV1rrDfrqL_QyzimUBRlNSCEKUyC6hdoUc07gHh5FsNnEwNzFwGxiYO5jUEQvtyIPAA8C3milBGtuASCNr9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911993933</pqid></control><display><type>article</type><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</creator><creatorcontrib>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</creatorcontrib><description>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</description><identifier>ISSN: 1077-260X</identifier><identifier>ISSN: 1558-4542</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2009.2034755</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>chip ; Conversion ; design ; dispersion ; efficiency ; Electromagnetic waveguides ; fiber ; Fiber nonlinear optics ; frequency-conversion ; gain ; laser ; light ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanowires ; Nonlinear optics ; optical ; Optical fiber polarization ; optical frequency conversion ; Optical mixing ; optical planar waveguides ; Optical pumping ; Optical refraction ; Optical signal processing ; Optical waveguides ; Optical wavelength conversion ; planar waveguides ; Pumps ; raman amplification ; Silicon ; silicon on insulator technology ; Waveguides ; Wavelengths</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-01, Vol.16 (1), p.250-256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</citedby><cites>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5398864$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27899,27900,27901,54770</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-19188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Shiming</creatorcontrib><creatorcontrib>Zhang, Xingzhi</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</description><subject>chip</subject><subject>Conversion</subject><subject>design</subject><subject>dispersion</subject><subject>efficiency</subject><subject>Electromagnetic waveguides</subject><subject>fiber</subject><subject>Fiber nonlinear optics</subject><subject>frequency-conversion</subject><subject>gain</subject><subject>laser</subject><subject>light</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nonlinear optics</subject><subject>optical</subject><subject>Optical fiber polarization</subject><subject>optical frequency conversion</subject><subject>Optical mixing</subject><subject>optical planar waveguides</subject><subject>Optical pumping</subject><subject>Optical refraction</subject><subject>Optical signal processing</subject><subject>Optical waveguides</subject><subject>Optical wavelength conversion</subject><subject>planar waveguides</subject><subject>Pumps</subject><subject>raman amplification</subject><subject>Silicon</subject><subject>silicon on insulator technology</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>1077-260X</issn><issn>1558-4542</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk9v1DAQxSNEJUrhC8DF4gIHUmzHf4-rpUBRVYraAjfLm4xTl6wd7KQV_fT1dqsKcYDLeDT6vSd7_KrqBcH7hGD97vPp2deDfYqxLqVhkvNH1S7hXNWMM_q49FjKmgr840n1NOdLjLFiCu9W40kcbPI3dvIx1IehgxFKCRP6bq9ggNBPF2gZwxWkXAh0nn3okQ1oEfoBuvpPOTqZ1yPyAVl06gfflsmxDfHaJ7hz62ffwbNqx9khw_P7c686_3BwtvxUH335eLhcHNUto2qqVwIUt9RRJ8utW6YcCKKstKXhuuVcNKsVCAm2c6p1grpGtKqjShKHLVbNXvV265uvYZxXZkx-bdNvE6037_23hYmpNz-nC0M0URv89RYfU_w1Q57M2ucWhsEGiHM2SvJiKgj9LylZIynTtCnkm3-SRMryV1rrDfrqL_QyzimUBRlNSCEKUyC6hdoUc07gHh5FsNnEwNzFwGxiYO5jUEQvtyIPAA8C3milBGtuASCNr9k</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gao, Shiming</creator><creator>Zhang, Xingzhi</creator><creator>Li, Zhiqiang</creator><creator>He, Sailing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201001</creationdate><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><author>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>chip</topic><topic>Conversion</topic><topic>design</topic><topic>dispersion</topic><topic>efficiency</topic><topic>Electromagnetic waveguides</topic><topic>fiber</topic><topic>Fiber nonlinear optics</topic><topic>frequency-conversion</topic><topic>gain</topic><topic>laser</topic><topic>light</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nonlinear optics</topic><topic>optical</topic><topic>Optical fiber polarization</topic><topic>optical frequency conversion</topic><topic>Optical mixing</topic><topic>optical planar waveguides</topic><topic>Optical pumping</topic><topic>Optical refraction</topic><topic>Optical signal processing</topic><topic>Optical waveguides</topic><topic>Optical wavelength conversion</topic><topic>planar waveguides</topic><topic>Pumps</topic><topic>raman amplification</topic><topic>Silicon</topic><topic>silicon on insulator technology</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shiming</creatorcontrib><creatorcontrib>Zhang, Xingzhi</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shiming</au><au>Zhang, Xingzhi</au><au>Li, Zhiqiang</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-01</date><risdate>2010</risdate><volume>16</volume><issue>1</issue><spage>250</spage><epage>256</epage><pages>250-256</pages><issn>1077-260X</issn><issn>1558-4542</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2009.2034755</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2010-01, Vol.16 (1), p.250-256 |
issn | 1077-260X 1558-4542 1558-4542 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_19188 |
source | IEEE Electronic Library (IEL) Journals |
subjects | chip Conversion design dispersion efficiency Electromagnetic waveguides fiber Fiber nonlinear optics frequency-conversion gain laser light Nanocomposites Nanomaterials Nanostructure Nanowires Nonlinear optics optical Optical fiber polarization optical frequency conversion Optical mixing optical planar waveguides Optical pumping Optical refraction Optical signal processing Optical waveguides Optical wavelength conversion planar waveguides Pumps raman amplification Silicon silicon on insulator technology Waveguides Wavelengths |
title | Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Independent%20Wavelength%20Conversion%20Using%20an%20Angled-Polarization%20Pump%20in%20a%20Silicon%20Nanowire%20Waveguide&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Gao,%20Shiming&rft.date=2010-01&rft.volume=16&rft.issue=1&rft.spage=250&rft.epage=256&rft.pages=250-256&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2009.2034755&rft_dat=%3Cproquest_swepu%3E1770349993%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911993933&rft_id=info:pmid/&rft_ieee_id=5398864&rfr_iscdi=true |