Loading…

Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide

A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2010-01, Vol.16 (1), p.250-256
Main Authors: Gao, Shiming, Zhang, Xingzhi, Li, Zhiqiang, He, Sailing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083
cites cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083
container_end_page 256
container_issue 1
container_start_page 250
container_title IEEE journal of selected topics in quantum electronics
container_volume 16
creator Gao, Shiming
Zhang, Xingzhi
Li, Zhiqiang
He, Sailing
description A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.
doi_str_mv 10.1109/JSTQE.2009.2034755
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_19188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5398864</ieee_id><sourcerecordid>1770349993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSNEJUrhC8DF4gIHUmzHf4-rpUBRVYraAjfLm4xTl6wd7KQV_fT1dqsKcYDLeDT6vSd7_KrqBcH7hGD97vPp2deDfYqxLqVhkvNH1S7hXNWMM_q49FjKmgr840n1NOdLjLFiCu9W40kcbPI3dvIx1IehgxFKCRP6bq9ggNBPF2gZwxWkXAh0nn3okQ1oEfoBuvpPOTqZ1yPyAVl06gfflsmxDfHaJ7hz62ffwbNqx9khw_P7c686_3BwtvxUH335eLhcHNUto2qqVwIUt9RRJ8utW6YcCKKstKXhuuVcNKsVCAm2c6p1grpGtKqjShKHLVbNXvV265uvYZxXZkx-bdNvE6037_23hYmpNz-nC0M0URv89RYfU_w1Q57M2ucWhsEGiHM2SvJiKgj9LylZIynTtCnkm3-SRMryV1rrDfrqL_QyzimUBRlNSCEKUyC6hdoUc07gHh5FsNnEwNzFwGxiYO5jUEQvtyIPAA8C3milBGtuASCNr9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911993933</pqid></control><display><type>article</type><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</creator><creatorcontrib>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</creatorcontrib><description>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</description><identifier>ISSN: 1077-260X</identifier><identifier>ISSN: 1558-4542</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2009.2034755</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>chip ; Conversion ; design ; dispersion ; efficiency ; Electromagnetic waveguides ; fiber ; Fiber nonlinear optics ; frequency-conversion ; gain ; laser ; light ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanowires ; Nonlinear optics ; optical ; Optical fiber polarization ; optical frequency conversion ; Optical mixing ; optical planar waveguides ; Optical pumping ; Optical refraction ; Optical signal processing ; Optical waveguides ; Optical wavelength conversion ; planar waveguides ; Pumps ; raman amplification ; Silicon ; silicon on insulator technology ; Waveguides ; Wavelengths</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-01, Vol.16 (1), p.250-256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</citedby><cites>FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5398864$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27899,27900,27901,54770</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-19188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Shiming</creatorcontrib><creatorcontrib>Zhang, Xingzhi</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</description><subject>chip</subject><subject>Conversion</subject><subject>design</subject><subject>dispersion</subject><subject>efficiency</subject><subject>Electromagnetic waveguides</subject><subject>fiber</subject><subject>Fiber nonlinear optics</subject><subject>frequency-conversion</subject><subject>gain</subject><subject>laser</subject><subject>light</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nonlinear optics</subject><subject>optical</subject><subject>Optical fiber polarization</subject><subject>optical frequency conversion</subject><subject>Optical mixing</subject><subject>optical planar waveguides</subject><subject>Optical pumping</subject><subject>Optical refraction</subject><subject>Optical signal processing</subject><subject>Optical waveguides</subject><subject>Optical wavelength conversion</subject><subject>planar waveguides</subject><subject>Pumps</subject><subject>raman amplification</subject><subject>Silicon</subject><subject>silicon on insulator technology</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>1077-260X</issn><issn>1558-4542</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk9v1DAQxSNEJUrhC8DF4gIHUmzHf4-rpUBRVYraAjfLm4xTl6wd7KQV_fT1dqsKcYDLeDT6vSd7_KrqBcH7hGD97vPp2deDfYqxLqVhkvNH1S7hXNWMM_q49FjKmgr840n1NOdLjLFiCu9W40kcbPI3dvIx1IehgxFKCRP6bq9ggNBPF2gZwxWkXAh0nn3okQ1oEfoBuvpPOTqZ1yPyAVl06gfflsmxDfHaJ7hz62ffwbNqx9khw_P7c686_3BwtvxUH335eLhcHNUto2qqVwIUt9RRJ8utW6YcCKKstKXhuuVcNKsVCAm2c6p1grpGtKqjShKHLVbNXvV265uvYZxXZkx-bdNvE6037_23hYmpNz-nC0M0URv89RYfU_w1Q57M2ucWhsEGiHM2SvJiKgj9LylZIynTtCnkm3-SRMryV1rrDfrqL_QyzimUBRlNSCEKUyC6hdoUc07gHh5FsNnEwNzFwGxiYO5jUEQvtyIPAA8C3milBGtuASCNr9k</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gao, Shiming</creator><creator>Zhang, Xingzhi</creator><creator>Li, Zhiqiang</creator><creator>He, Sailing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201001</creationdate><title>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</title><author>Gao, Shiming ; Zhang, Xingzhi ; Li, Zhiqiang ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>chip</topic><topic>Conversion</topic><topic>design</topic><topic>dispersion</topic><topic>efficiency</topic><topic>Electromagnetic waveguides</topic><topic>fiber</topic><topic>Fiber nonlinear optics</topic><topic>frequency-conversion</topic><topic>gain</topic><topic>laser</topic><topic>light</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nonlinear optics</topic><topic>optical</topic><topic>Optical fiber polarization</topic><topic>optical frequency conversion</topic><topic>Optical mixing</topic><topic>optical planar waveguides</topic><topic>Optical pumping</topic><topic>Optical refraction</topic><topic>Optical signal processing</topic><topic>Optical waveguides</topic><topic>Optical wavelength conversion</topic><topic>planar waveguides</topic><topic>Pumps</topic><topic>raman amplification</topic><topic>Silicon</topic><topic>silicon on insulator technology</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shiming</creatorcontrib><creatorcontrib>Zhang, Xingzhi</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shiming</au><au>Zhang, Xingzhi</au><au>Li, Zhiqiang</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-01</date><risdate>2010</risdate><volume>16</volume><issue>1</issue><spage>250</spage><epage>256</epage><pages>250-256</pages><issn>1077-260X</issn><issn>1558-4542</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>A proposal for polarization-independent wavelength conversion is presented based on four-wave mixing in a silicon nanowire waveguide using an angled-polarization pump. The principle of polarization independence is introduced and the theoretical model is established. The optimized incident pump polarization angle is obtained for different waveguide geometries, and a polarization-independent bandwidth of 64 nm is achieved with the efficiency fluctuation of less than 1 dB in a 285 nm × 650 nm silicon waveguide. The polarization-independent bandwidth is limited by the larger one of the TE- and TM-mode phase mismatches, and can be enhanced further by carefully tailoring the dispersion characteristics of the silicon nanowire waveguide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2009.2034755</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2010-01, Vol.16 (1), p.250-256
issn 1077-260X
1558-4542
1558-4542
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_19188
source IEEE Electronic Library (IEL) Journals
subjects chip
Conversion
design
dispersion
efficiency
Electromagnetic waveguides
fiber
Fiber nonlinear optics
frequency-conversion
gain
laser
light
Nanocomposites
Nanomaterials
Nanostructure
Nanowires
Nonlinear optics
optical
Optical fiber polarization
optical frequency conversion
Optical mixing
optical planar waveguides
Optical pumping
Optical refraction
Optical signal processing
Optical waveguides
Optical wavelength conversion
planar waveguides
Pumps
raman amplification
Silicon
silicon on insulator technology
Waveguides
Wavelengths
title Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Independent%20Wavelength%20Conversion%20Using%20an%20Angled-Polarization%20Pump%20in%20a%20Silicon%20Nanowire%20Waveguide&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Gao,%20Shiming&rft.date=2010-01&rft.volume=16&rft.issue=1&rft.spage=250&rft.epage=256&rft.pages=250-256&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2009.2034755&rft_dat=%3Cproquest_swepu%3E1770349993%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-b6e85a2f2f7260c48fe618a7a8fe59c5563bbe67eadf8cf62f36c8d2871f0a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911993933&rft_id=info:pmid/&rft_ieee_id=5398864&rfr_iscdi=true