Loading…

Mastering nonlinear flow dynamics for laminar flow control

A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mea...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103
Main Authors: Sattarzadeh, Sohrab S, Fransson, Jens H M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3
cites cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3
container_end_page 021103
container_issue 2-1
container_start_page 021103
container_title Physical review. E
container_volume 94
creator Sattarzadeh, Sohrab S
Fransson, Jens H M
description A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.
doi_str_mv 10.1103/PhysRevE.94.021103
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_192392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820593640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRrNT-AReSpZvUO4-83JVaH1BRRN0Ok3m00XSmziSW_ntT0hYu3MO955zFh9AVhjHGQG_fltvwrv9m44KNgexOJ-iCsAxigISeHjVLBmgUwjcA4BSKDJNzNCBZSjJCkwt09yJCo31lF5F1tq6sFj4ytdtEamvFqpIhMs5HdSft4SOdbbyrL9GZEXXQo_0eos-H2cf0KZ6_Pj5PJ_NYUoabmKQgQBANpVElUYnKZJYTScqM5qZQuTKyTA0kSWEUZsYUmBCWYtZZmKSipEMU971ho9dtyde-Wgm_5U5U_L76mnDnF_ynWXJcENrNEN30_rV3v60ODV9VQeq6Fla7NnCcE0gKmjLorKS3Su9C8NocyzHwHVN-wMwLxnvMXeh639-WK62OkQNU-g99RXoq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820593640</pqid></control><display><type>article</type><title>Mastering nonlinear flow dynamics for laminar flow control</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Sattarzadeh, Sohrab S ; Fransson, Jens H M</creator><creatorcontrib>Sattarzadeh, Sohrab S ; Fransson, Jens H M</creatorcontrib><description>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.021103</identifier><identifier>PMID: 27627235</identifier><language>eng</language><publisher>United States</publisher><subject>Boundary-Layer-Transition ; Stability ; Stabilization ; Streaks ; Waves</subject><ispartof>Physical review. E, 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</citedby><cites>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27627235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192392$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sattarzadeh, Sohrab S</creatorcontrib><creatorcontrib>Fransson, Jens H M</creatorcontrib><title>Mastering nonlinear flow dynamics for laminar flow control</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</description><subject>Boundary-Layer-Transition</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Streaks</subject><subject>Waves</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRrNT-AReSpZvUO4-83JVaH1BRRN0Ok3m00XSmziSW_ntT0hYu3MO955zFh9AVhjHGQG_fltvwrv9m44KNgexOJ-iCsAxigISeHjVLBmgUwjcA4BSKDJNzNCBZSjJCkwt09yJCo31lF5F1tq6sFj4ytdtEamvFqpIhMs5HdSft4SOdbbyrL9GZEXXQo_0eos-H2cf0KZ6_Pj5PJ_NYUoabmKQgQBANpVElUYnKZJYTScqM5qZQuTKyTA0kSWEUZsYUmBCWYtZZmKSipEMU971ho9dtyde-Wgm_5U5U_L76mnDnF_ynWXJcENrNEN30_rV3v60ODV9VQeq6Fla7NnCcE0gKmjLorKS3Su9C8NocyzHwHVN-wMwLxnvMXeh639-WK62OkQNU-g99RXoq</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Sattarzadeh, Sohrab S</creator><creator>Fransson, Jens H M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201608</creationdate><title>Mastering nonlinear flow dynamics for laminar flow control</title><author>Sattarzadeh, Sohrab S ; Fransson, Jens H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary-Layer-Transition</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Streaks</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattarzadeh, Sohrab S</creatorcontrib><creatorcontrib>Fransson, Jens H M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattarzadeh, Sohrab S</au><au>Fransson, Jens H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mastering nonlinear flow dynamics for laminar flow control</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-08</date><risdate>2016</risdate><volume>94</volume><issue>2-1</issue><spage>021103</spage><epage>021103</epage><pages>021103-021103</pages><artnum>021103</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</abstract><cop>United States</cop><pmid>27627235</pmid><doi>10.1103/PhysRevE.94.021103</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103
issn 2470-0045
2470-0053
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_192392
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Boundary-Layer-Transition
Stability
Stabilization
Streaks
Waves
title Mastering nonlinear flow dynamics for laminar flow control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mastering%20nonlinear%20flow%20dynamics%20for%20laminar%20flow%20control&rft.jtitle=Physical%20review.%20E&rft.au=Sattarzadeh,%20Sohrab%20S&rft.date=2016-08&rft.volume=94&rft.issue=2-1&rft.spage=021103&rft.epage=021103&rft.pages=021103-021103&rft.artnum=021103&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.021103&rft_dat=%3Cproquest_swepu%3E1820593640%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1820593640&rft_id=info:pmid/27627235&rfr_iscdi=true