Loading…
Mastering nonlinear flow dynamics for laminar flow control
A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mea...
Saved in:
Published in: | Physical review. E 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3 |
container_end_page | 021103 |
container_issue | 2-1 |
container_start_page | 021103 |
container_title | Physical review. E |
container_volume | 94 |
creator | Sattarzadeh, Sohrab S Fransson, Jens H M |
description | A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%. |
doi_str_mv | 10.1103/PhysRevE.94.021103 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_192392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820593640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRrNT-AReSpZvUO4-83JVaH1BRRN0Ok3m00XSmziSW_ntT0hYu3MO955zFh9AVhjHGQG_fltvwrv9m44KNgexOJ-iCsAxigISeHjVLBmgUwjcA4BSKDJNzNCBZSjJCkwt09yJCo31lF5F1tq6sFj4ytdtEamvFqpIhMs5HdSft4SOdbbyrL9GZEXXQo_0eos-H2cf0KZ6_Pj5PJ_NYUoabmKQgQBANpVElUYnKZJYTScqM5qZQuTKyTA0kSWEUZsYUmBCWYtZZmKSipEMU971ho9dtyde-Wgm_5U5U_L76mnDnF_ynWXJcENrNEN30_rV3v60ODV9VQeq6Fla7NnCcE0gKmjLorKS3Su9C8NocyzHwHVN-wMwLxnvMXeh639-WK62OkQNU-g99RXoq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820593640</pqid></control><display><type>article</type><title>Mastering nonlinear flow dynamics for laminar flow control</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Sattarzadeh, Sohrab S ; Fransson, Jens H M</creator><creatorcontrib>Sattarzadeh, Sohrab S ; Fransson, Jens H M</creatorcontrib><description>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.021103</identifier><identifier>PMID: 27627235</identifier><language>eng</language><publisher>United States</publisher><subject>Boundary-Layer-Transition ; Stability ; Stabilization ; Streaks ; Waves</subject><ispartof>Physical review. E, 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</citedby><cites>FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27627235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192392$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sattarzadeh, Sohrab S</creatorcontrib><creatorcontrib>Fransson, Jens H M</creatorcontrib><title>Mastering nonlinear flow dynamics for laminar flow control</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</description><subject>Boundary-Layer-Transition</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Streaks</subject><subject>Waves</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRrNT-AReSpZvUO4-83JVaH1BRRN0Ok3m00XSmziSW_ntT0hYu3MO955zFh9AVhjHGQG_fltvwrv9m44KNgexOJ-iCsAxigISeHjVLBmgUwjcA4BSKDJNzNCBZSjJCkwt09yJCo31lF5F1tq6sFj4ytdtEamvFqpIhMs5HdSft4SOdbbyrL9GZEXXQo_0eos-H2cf0KZ6_Pj5PJ_NYUoabmKQgQBANpVElUYnKZJYTScqM5qZQuTKyTA0kSWEUZsYUmBCWYtZZmKSipEMU971ho9dtyde-Wgm_5U5U_L76mnDnF_ynWXJcENrNEN30_rV3v60ODV9VQeq6Fla7NnCcE0gKmjLorKS3Su9C8NocyzHwHVN-wMwLxnvMXeh639-WK62OkQNU-g99RXoq</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Sattarzadeh, Sohrab S</creator><creator>Fransson, Jens H M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201608</creationdate><title>Mastering nonlinear flow dynamics for laminar flow control</title><author>Sattarzadeh, Sohrab S ; Fransson, Jens H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary-Layer-Transition</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Streaks</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattarzadeh, Sohrab S</creatorcontrib><creatorcontrib>Fransson, Jens H M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattarzadeh, Sohrab S</au><au>Fransson, Jens H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mastering nonlinear flow dynamics for laminar flow control</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-08</date><risdate>2016</risdate><volume>94</volume><issue>2-1</issue><spage>021103</spage><epage>021103</epage><pages>021103-021103</pages><artnum>021103</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.</abstract><cop>United States</cop><pmid>27627235</pmid><doi>10.1103/PhysRevE.94.021103</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2016-08, Vol.94 (2-1), p.021103-021103, Article 021103 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_192392 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Boundary-Layer-Transition Stability Stabilization Streaks Waves |
title | Mastering nonlinear flow dynamics for laminar flow control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mastering%20nonlinear%20flow%20dynamics%20for%20laminar%20flow%20control&rft.jtitle=Physical%20review.%20E&rft.au=Sattarzadeh,%20Sohrab%20S&rft.date=2016-08&rft.volume=94&rft.issue=2-1&rft.spage=021103&rft.epage=021103&rft.pages=021103-021103&rft.artnum=021103&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.021103&rft_dat=%3Cproquest_swepu%3E1820593640%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-260a0a2e0bfdb2d5d7c782c2b738f9d8dfcb6f0559fd14ff912246142c24c3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1820593640&rft_id=info:pmid/27627235&rfr_iscdi=true |