Loading…

Regularity of a Free Boundary with Application to the Pompeiu Problem

In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics 2000-01, Vol.151 (1), p.269-292
Main Authors: Caffarelli, Luis A., Karp, Lavi, Shahgholian, Henrik
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3
cites
container_end_page 292
container_issue 1
container_start_page 269
container_title Annals of mathematics
container_volume 151
creator Caffarelli, Luis A.
Karp, Lavi
Shahgholian, Henrik
description In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.
doi_str_mv 10.2307/121117
format article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_19609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>121117</jstor_id><sourcerecordid>121117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAcFKxVf0NA8OTWfGw3zbHWVoWCRVS8hWx20qZumyXJUvrvXVnx5mkYeN5heBG6omTEOBF3lFFKxQkaEEJ4lk-KzzN0HuO2W4UoxADNX2Hd1jq4dMTeYo0XAQDf-3Zf6XDEB5c2eNo0tTM6Ob_HyeO0AbzyuwZci1fBlzXsLtCp1XWEy985RO-L-dvsKVu-PD7PpsvM8FykLDekYkVlx9WYyZzJwjCuDYEJFYLxsSQ8L8uKg6YGuNAFWMG0ZaSsdC6NtHyIbvu78QBNW6omuF33pvLaqQf3MVU-rNVX2igqCyI7ftNzE3yMAexfgBL104_q--ngdQ-3Mfnwn_oGhYlkcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><source>JSTOR</source><creator>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</creator><creatorcontrib>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</creatorcontrib><description>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</description><identifier>ISSN: 0003-486X</identifier><identifier>ISSN: 1939-8980</identifier><identifier>DOI: 10.2307/121117</identifier><language>eng</language><publisher>Princeton University Press</publisher><subject>dimensions ; growth ; Infinity ; Lebesgue measures ; Mathematical functions ; Mathematical inequalities ; Mathematical monotonicity ; Mathematical theorems ; Maximum principle ; Polynomials ; quadrature domains ; spheres ; Unit ball</subject><ispartof>Annals of mathematics, 2000-01, Vol.151 (1), p.269-292</ispartof><rights>Copyright 2000 Princeton University (Mathematics Department)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/121117$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/121117$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-19609$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Caffarelli, Luis A.</creatorcontrib><creatorcontrib>Karp, Lavi</creatorcontrib><creatorcontrib>Shahgholian, Henrik</creatorcontrib><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><title>Annals of mathematics</title><description>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</description><subject>dimensions</subject><subject>growth</subject><subject>Infinity</subject><subject>Lebesgue measures</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical monotonicity</subject><subject>Mathematical theorems</subject><subject>Maximum principle</subject><subject>Polynomials</subject><subject>quadrature domains</subject><subject>spheres</subject><subject>Unit ball</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAcFKxVf0NA8OTWfGw3zbHWVoWCRVS8hWx20qZumyXJUvrvXVnx5mkYeN5heBG6omTEOBF3lFFKxQkaEEJ4lk-KzzN0HuO2W4UoxADNX2Hd1jq4dMTeYo0XAQDf-3Zf6XDEB5c2eNo0tTM6Ob_HyeO0AbzyuwZci1fBlzXsLtCp1XWEy985RO-L-dvsKVu-PD7PpsvM8FykLDekYkVlx9WYyZzJwjCuDYEJFYLxsSQ8L8uKg6YGuNAFWMG0ZaSsdC6NtHyIbvu78QBNW6omuF33pvLaqQf3MVU-rNVX2igqCyI7ftNzE3yMAexfgBL104_q--ngdQ-3Mfnwn_oGhYlkcg</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Caffarelli, Luis A.</creator><creator>Karp, Lavi</creator><creator>Shahgholian, Henrik</creator><general>Princeton University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20000101</creationdate><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><author>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>dimensions</topic><topic>growth</topic><topic>Infinity</topic><topic>Lebesgue measures</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical monotonicity</topic><topic>Mathematical theorems</topic><topic>Maximum principle</topic><topic>Polynomials</topic><topic>quadrature domains</topic><topic>spheres</topic><topic>Unit ball</topic><toplevel>online_resources</toplevel><creatorcontrib>Caffarelli, Luis A.</creatorcontrib><creatorcontrib>Karp, Lavi</creatorcontrib><creatorcontrib>Shahgholian, Henrik</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caffarelli, Luis A.</au><au>Karp, Lavi</au><au>Shahgholian, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity of a Free Boundary with Application to the Pompeiu Problem</atitle><jtitle>Annals of mathematics</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>151</volume><issue>1</issue><spage>269</spage><epage>292</epage><pages>269-292</pages><issn>0003-486X</issn><issn>1939-8980</issn><abstract>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</abstract><pub>Princeton University Press</pub><doi>10.2307/121117</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 2000-01, Vol.151 (1), p.269-292
issn 0003-486X
1939-8980
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_19609
source JSTOR
subjects dimensions
growth
Infinity
Lebesgue measures
Mathematical functions
Mathematical inequalities
Mathematical monotonicity
Mathematical theorems
Maximum principle
Polynomials
quadrature domains
spheres
Unit ball
title Regularity of a Free Boundary with Application to the Pompeiu Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20of%20a%20Free%20Boundary%20with%20Application%20to%20the%20Pompeiu%20Problem&rft.jtitle=Annals%20of%20mathematics&rft.au=Caffarelli,%20Luis%20A.&rft.date=2000-01-01&rft.volume=151&rft.issue=1&rft.spage=269&rft.epage=292&rft.pages=269-292&rft.issn=0003-486X&rft_id=info:doi/10.2307/121117&rft_dat=%3Cjstor_swepu%3E121117%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=121117&rfr_iscdi=true