Loading…
Regularity of a Free Boundary with Application to the Pompeiu Problem
In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement...
Saved in:
Published in: | Annals of mathematics 2000-01, Vol.151 (1), p.269-292 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3 |
---|---|
cites | |
container_end_page | 292 |
container_issue | 1 |
container_start_page | 269 |
container_title | Annals of mathematics |
container_volume | 151 |
creator | Caffarelli, Luis A. Karp, Lavi Shahgholian, Henrik |
description | In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities. |
doi_str_mv | 10.2307/121117 |
format | article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_19609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>121117</jstor_id><sourcerecordid>121117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAcFKxVf0NA8OTWfGw3zbHWVoWCRVS8hWx20qZumyXJUvrvXVnx5mkYeN5heBG6omTEOBF3lFFKxQkaEEJ4lk-KzzN0HuO2W4UoxADNX2Hd1jq4dMTeYo0XAQDf-3Zf6XDEB5c2eNo0tTM6Ob_HyeO0AbzyuwZci1fBlzXsLtCp1XWEy985RO-L-dvsKVu-PD7PpsvM8FykLDekYkVlx9WYyZzJwjCuDYEJFYLxsSQ8L8uKg6YGuNAFWMG0ZaSsdC6NtHyIbvu78QBNW6omuF33pvLaqQf3MVU-rNVX2igqCyI7ftNzE3yMAexfgBL104_q--ngdQ-3Mfnwn_oGhYlkcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><source>JSTOR</source><creator>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</creator><creatorcontrib>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</creatorcontrib><description>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</description><identifier>ISSN: 0003-486X</identifier><identifier>ISSN: 1939-8980</identifier><identifier>DOI: 10.2307/121117</identifier><language>eng</language><publisher>Princeton University Press</publisher><subject>dimensions ; growth ; Infinity ; Lebesgue measures ; Mathematical functions ; Mathematical inequalities ; Mathematical monotonicity ; Mathematical theorems ; Maximum principle ; Polynomials ; quadrature domains ; spheres ; Unit ball</subject><ispartof>Annals of mathematics, 2000-01, Vol.151 (1), p.269-292</ispartof><rights>Copyright 2000 Princeton University (Mathematics Department)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/121117$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/121117$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-19609$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Caffarelli, Luis A.</creatorcontrib><creatorcontrib>Karp, Lavi</creatorcontrib><creatorcontrib>Shahgholian, Henrik</creatorcontrib><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><title>Annals of mathematics</title><description>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</description><subject>dimensions</subject><subject>growth</subject><subject>Infinity</subject><subject>Lebesgue measures</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical monotonicity</subject><subject>Mathematical theorems</subject><subject>Maximum principle</subject><subject>Polynomials</subject><subject>quadrature domains</subject><subject>spheres</subject><subject>Unit ball</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAcFKxVf0NA8OTWfGw3zbHWVoWCRVS8hWx20qZumyXJUvrvXVnx5mkYeN5heBG6omTEOBF3lFFKxQkaEEJ4lk-KzzN0HuO2W4UoxADNX2Hd1jq4dMTeYo0XAQDf-3Zf6XDEB5c2eNo0tTM6Ob_HyeO0AbzyuwZci1fBlzXsLtCp1XWEy985RO-L-dvsKVu-PD7PpsvM8FykLDekYkVlx9WYyZzJwjCuDYEJFYLxsSQ8L8uKg6YGuNAFWMG0ZaSsdC6NtHyIbvu78QBNW6omuF33pvLaqQf3MVU-rNVX2igqCyI7ftNzE3yMAexfgBL104_q--ngdQ-3Mfnwn_oGhYlkcg</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Caffarelli, Luis A.</creator><creator>Karp, Lavi</creator><creator>Shahgholian, Henrik</creator><general>Princeton University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20000101</creationdate><title>Regularity of a Free Boundary with Application to the Pompeiu Problem</title><author>Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>dimensions</topic><topic>growth</topic><topic>Infinity</topic><topic>Lebesgue measures</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical monotonicity</topic><topic>Mathematical theorems</topic><topic>Maximum principle</topic><topic>Polynomials</topic><topic>quadrature domains</topic><topic>spheres</topic><topic>Unit ball</topic><toplevel>online_resources</toplevel><creatorcontrib>Caffarelli, Luis A.</creatorcontrib><creatorcontrib>Karp, Lavi</creatorcontrib><creatorcontrib>Shahgholian, Henrik</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caffarelli, Luis A.</au><au>Karp, Lavi</au><au>Shahgholian, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity of a Free Boundary with Application to the Pompeiu Problem</atitle><jtitle>Annals of mathematics</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>151</volume><issue>1</issue><spage>269</spage><epage>292</epage><pages>269-292</pages><issn>0003-486X</issn><issn>1939-8980</issn><abstract>In the unit ball B(0, 1), let u and Ω (a domain in RN) solve the following overdetermined problem: Δ u = χΩin B(0, 1), 0 ∈ ∂ Ω , u = |Δ u| = 0 in B(0, 1)$\backslash \ \Omega $, where χΩdenotes the characteristic function, and the equation is satisfied in the sense of distributions. If the complement of Ω does not develop cusp singularities at the origin then we prove ∂ Ω is analytic in some small neighborhood of the origin. The result can be modified to yield for more general divergence form operators. As an application of this, then, we obtain the regularity of the boundary of a domain without the Pompeiu property, provided its complement has no cusp singularities.</abstract><pub>Princeton University Press</pub><doi>10.2307/121117</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 2000-01, Vol.151 (1), p.269-292 |
issn | 0003-486X 1939-8980 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_19609 |
source | JSTOR |
subjects | dimensions growth Infinity Lebesgue measures Mathematical functions Mathematical inequalities Mathematical monotonicity Mathematical theorems Maximum principle Polynomials quadrature domains spheres Unit ball |
title | Regularity of a Free Boundary with Application to the Pompeiu Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20of%20a%20Free%20Boundary%20with%20Application%20to%20the%20Pompeiu%20Problem&rft.jtitle=Annals%20of%20mathematics&rft.au=Caffarelli,%20Luis%20A.&rft.date=2000-01-01&rft.volume=151&rft.issue=1&rft.spage=269&rft.epage=292&rft.pages=269-292&rft.issn=0003-486X&rft_id=info:doi/10.2307/121117&rft_dat=%3Cjstor_swepu%3E121117%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-4c0d26df5d5294296c23ac0e81772359034bbd3ea1ce37a6ef72af20bda49c9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=121117&rfr_iscdi=true |