Loading…

Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence

We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2016-12, Vol.28 (12)
Main Authors: Albernaz, Daniel L., Do-Quang, Minh, Hermanson, James C., Amberg, Gustav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3
cites cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 28
creator Albernaz, Daniel L.
Do-Quang, Minh
Hermanson, James C.
Amberg, Gustav
description We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.
doi_str_mv 10.1063/1.4972276
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_201175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121505026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</originalsourceid><addsrcrecordid>eNqdkUtLxDAUhYMoqKML_0HAlUr1JmnTdim-QXCjbkOauZ3J2DY1SZX599aZQZeCq3s5fJz7OIQcMThnIMUFO0_LnPNcbpE9BkWZ5FLK7e8-h0RKwXbJfggLABAll3tk9jxH37rpstOtNYG6mmrqUTe0bgY7pR1qT-McqfE2WjPqvbNdpLaj3dCiX0nBtkOjo3XdysAGF73rraFx8NXQYGfwgOzUugl4uKkT8nJ783x1nzw-3T1cXT4mJgUWk2mOecUEqyBD5EWacl2VpRGshDozdVWkmOYSgRcZyDwTupAmLQBqKTGrZCUm5GztGz6xHyrVe9tqv1ROW3VtXy-V8zMV5kpwVhQjnfxNv8W54sDYOG5Cjtd87937gCGqhRt8Nx6kOOMsgwy4HKmTNWW8C8Fj_ePLQH2npJjapDSyp5sNjI2rF_4P_nD-F1T9tBZf-B2hJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121505026</pqid></control><display><type>article</type><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</creator><creatorcontrib>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</creatorcontrib><description>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 1089-7666</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4972276</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compressibility ; Computational fluid dynamics ; Computer simulation ; Covariance ; Critical point ; Energy equation ; Equation of state ; Equations of state ; Fluid dynamics ; Fluid flow ; Hybrid lattice ; Ideal gas ; Isotropic turbulence ; Kinetic energy ; Kinetics ; Linearity ; Numerical models ; Physics ; Probability density function ; Probability density functions ; Real fluids ; Reynolds number ; Spectral behaviors ; Temperature increase ; Thermodynamic properties ; Thermodynamic variables ; Thermodynamics ; Turbulence ; Turbulent flow ; Variation</subject><ispartof>Physics of fluids (1994), 2016-12, Vol.28 (12)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</citedby><cites>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</cites><orcidid>0000-0003-2508-7096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1558,27923,27924</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201175$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-32188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Albernaz, Daniel L.</creatorcontrib><creatorcontrib>Do-Quang, Minh</creatorcontrib><creatorcontrib>Hermanson, James C.</creatorcontrib><creatorcontrib>Amberg, Gustav</creatorcontrib><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><title>Physics of fluids (1994)</title><description>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</description><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Critical point</subject><subject>Energy equation</subject><subject>Equation of state</subject><subject>Equations of state</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hybrid lattice</subject><subject>Ideal gas</subject><subject>Isotropic turbulence</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Linearity</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Real fluids</subject><subject>Reynolds number</subject><subject>Spectral behaviors</subject><subject>Temperature increase</subject><subject>Thermodynamic properties</subject><subject>Thermodynamic variables</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variation</subject><issn>1070-6631</issn><issn>1089-7666</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkUtLxDAUhYMoqKML_0HAlUr1JmnTdim-QXCjbkOauZ3J2DY1SZX599aZQZeCq3s5fJz7OIQcMThnIMUFO0_LnPNcbpE9BkWZ5FLK7e8-h0RKwXbJfggLABAll3tk9jxH37rpstOtNYG6mmrqUTe0bgY7pR1qT-McqfE2WjPqvbNdpLaj3dCiX0nBtkOjo3XdysAGF73rraFx8NXQYGfwgOzUugl4uKkT8nJ783x1nzw-3T1cXT4mJgUWk2mOecUEqyBD5EWacl2VpRGshDozdVWkmOYSgRcZyDwTupAmLQBqKTGrZCUm5GztGz6xHyrVe9tqv1ROW3VtXy-V8zMV5kpwVhQjnfxNv8W54sDYOG5Cjtd87937gCGqhRt8Nx6kOOMsgwy4HKmTNWW8C8Fj_ePLQH2npJjapDSyp5sNjI2rF_4P_nD-F1T9tBZf-B2hJA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Albernaz, Daniel L.</creator><creator>Do-Quang, Minh</creator><creator>Hermanson, James C.</creator><creator>Amberg, Gustav</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DF8</scope><orcidid>https://orcid.org/0000-0003-2508-7096</orcidid></search><sort><creationdate>20161201</creationdate><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><author>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Critical point</topic><topic>Energy equation</topic><topic>Equation of state</topic><topic>Equations of state</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hybrid lattice</topic><topic>Ideal gas</topic><topic>Isotropic turbulence</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Linearity</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Real fluids</topic><topic>Reynolds number</topic><topic>Spectral behaviors</topic><topic>Temperature increase</topic><topic>Thermodynamic properties</topic><topic>Thermodynamic variables</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albernaz, Daniel L.</creatorcontrib><creatorcontrib>Do-Quang, Minh</creatorcontrib><creatorcontrib>Hermanson, James C.</creatorcontrib><creatorcontrib>Amberg, Gustav</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Södertörns högskola- SwePub</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albernaz, Daniel L.</au><au>Do-Quang, Minh</au><au>Hermanson, James C.</au><au>Amberg, Gustav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>28</volume><issue>12</issue><issn>1070-6631</issn><issn>1089-7666</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972276</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2508-7096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2016-12, Vol.28 (12)
issn 1070-6631
1089-7666
1089-7666
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_201175
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Compressibility
Computational fluid dynamics
Computer simulation
Covariance
Critical point
Energy equation
Equation of state
Equations of state
Fluid dynamics
Fluid flow
Hybrid lattice
Ideal gas
Isotropic turbulence
Kinetic energy
Kinetics
Linearity
Numerical models
Physics
Probability density function
Probability density functions
Real fluids
Reynolds number
Spectral behaviors
Temperature increase
Thermodynamic properties
Thermodynamic variables
Thermodynamics
Turbulence
Turbulent flow
Variation
title Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20a%20real%20fluid%20near%20the%20critical%20point%20in%20numerical%20simulations%20of%20isotropic%20turbulence&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Albernaz,%20Daniel%20L.&rft.date=2016-12-01&rft.volume=28&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4972276&rft_dat=%3Cproquest_swepu%3E2121505026%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121505026&rft_id=info:pmid/&rfr_iscdi=true