Loading…
Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence
We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables...
Saved in:
Published in: | Physics of fluids (1994) 2016-12, Vol.28 (12) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 28 |
creator | Albernaz, Daniel L. Do-Quang, Minh Hermanson, James C. Amberg, Gustav |
description | We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy. |
doi_str_mv | 10.1063/1.4972276 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_201175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121505026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</originalsourceid><addsrcrecordid>eNqdkUtLxDAUhYMoqKML_0HAlUr1JmnTdim-QXCjbkOauZ3J2DY1SZX599aZQZeCq3s5fJz7OIQcMThnIMUFO0_LnPNcbpE9BkWZ5FLK7e8-h0RKwXbJfggLABAll3tk9jxH37rpstOtNYG6mmrqUTe0bgY7pR1qT-McqfE2WjPqvbNdpLaj3dCiX0nBtkOjo3XdysAGF73rraFx8NXQYGfwgOzUugl4uKkT8nJ783x1nzw-3T1cXT4mJgUWk2mOecUEqyBD5EWacl2VpRGshDozdVWkmOYSgRcZyDwTupAmLQBqKTGrZCUm5GztGz6xHyrVe9tqv1ROW3VtXy-V8zMV5kpwVhQjnfxNv8W54sDYOG5Cjtd87937gCGqhRt8Nx6kOOMsgwy4HKmTNWW8C8Fj_ePLQH2npJjapDSyp5sNjI2rF_4P_nD-F1T9tBZf-B2hJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121505026</pqid></control><display><type>article</type><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</creator><creatorcontrib>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</creatorcontrib><description>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 1089-7666</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4972276</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compressibility ; Computational fluid dynamics ; Computer simulation ; Covariance ; Critical point ; Energy equation ; Equation of state ; Equations of state ; Fluid dynamics ; Fluid flow ; Hybrid lattice ; Ideal gas ; Isotropic turbulence ; Kinetic energy ; Kinetics ; Linearity ; Numerical models ; Physics ; Probability density function ; Probability density functions ; Real fluids ; Reynolds number ; Spectral behaviors ; Temperature increase ; Thermodynamic properties ; Thermodynamic variables ; Thermodynamics ; Turbulence ; Turbulent flow ; Variation</subject><ispartof>Physics of fluids (1994), 2016-12, Vol.28 (12)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</citedby><cites>FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</cites><orcidid>0000-0003-2508-7096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1558,27923,27924</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201175$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-32188$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Albernaz, Daniel L.</creatorcontrib><creatorcontrib>Do-Quang, Minh</creatorcontrib><creatorcontrib>Hermanson, James C.</creatorcontrib><creatorcontrib>Amberg, Gustav</creatorcontrib><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><title>Physics of fluids (1994)</title><description>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</description><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Critical point</subject><subject>Energy equation</subject><subject>Equation of state</subject><subject>Equations of state</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hybrid lattice</subject><subject>Ideal gas</subject><subject>Isotropic turbulence</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Linearity</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Real fluids</subject><subject>Reynolds number</subject><subject>Spectral behaviors</subject><subject>Temperature increase</subject><subject>Thermodynamic properties</subject><subject>Thermodynamic variables</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variation</subject><issn>1070-6631</issn><issn>1089-7666</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkUtLxDAUhYMoqKML_0HAlUr1JmnTdim-QXCjbkOauZ3J2DY1SZX599aZQZeCq3s5fJz7OIQcMThnIMUFO0_LnPNcbpE9BkWZ5FLK7e8-h0RKwXbJfggLABAll3tk9jxH37rpstOtNYG6mmrqUTe0bgY7pR1qT-McqfE2WjPqvbNdpLaj3dCiX0nBtkOjo3XdysAGF73rraFx8NXQYGfwgOzUugl4uKkT8nJ783x1nzw-3T1cXT4mJgUWk2mOecUEqyBD5EWacl2VpRGshDozdVWkmOYSgRcZyDwTupAmLQBqKTGrZCUm5GztGz6xHyrVe9tqv1ROW3VtXy-V8zMV5kpwVhQjnfxNv8W54sDYOG5Cjtd87937gCGqhRt8Nx6kOOMsgwy4HKmTNWW8C8Fj_ePLQH2npJjapDSyp5sNjI2rF_4P_nD-F1T9tBZf-B2hJA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Albernaz, Daniel L.</creator><creator>Do-Quang, Minh</creator><creator>Hermanson, James C.</creator><creator>Amberg, Gustav</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DF8</scope><orcidid>https://orcid.org/0000-0003-2508-7096</orcidid></search><sort><creationdate>20161201</creationdate><title>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</title><author>Albernaz, Daniel L. ; Do-Quang, Minh ; Hermanson, James C. ; Amberg, Gustav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Critical point</topic><topic>Energy equation</topic><topic>Equation of state</topic><topic>Equations of state</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hybrid lattice</topic><topic>Ideal gas</topic><topic>Isotropic turbulence</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Linearity</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Real fluids</topic><topic>Reynolds number</topic><topic>Spectral behaviors</topic><topic>Temperature increase</topic><topic>Thermodynamic properties</topic><topic>Thermodynamic variables</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albernaz, Daniel L.</creatorcontrib><creatorcontrib>Do-Quang, Minh</creatorcontrib><creatorcontrib>Hermanson, James C.</creatorcontrib><creatorcontrib>Amberg, Gustav</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Södertörns högskola- SwePub</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albernaz, Daniel L.</au><au>Do-Quang, Minh</au><au>Hermanson, James C.</au><au>Amberg, Gustav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>28</volume><issue>12</issue><issn>1070-6631</issn><issn>1089-7666</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972276</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2508-7096</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2016-12, Vol.28 (12) |
issn | 1070-6631 1089-7666 1089-7666 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_201175 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Compressibility Computational fluid dynamics Computer simulation Covariance Critical point Energy equation Equation of state Equations of state Fluid dynamics Fluid flow Hybrid lattice Ideal gas Isotropic turbulence Kinetic energy Kinetics Linearity Numerical models Physics Probability density function Probability density functions Real fluids Reynolds number Spectral behaviors Temperature increase Thermodynamic properties Thermodynamic variables Thermodynamics Turbulence Turbulent flow Variation |
title | Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20a%20real%20fluid%20near%20the%20critical%20point%20in%20numerical%20simulations%20of%20isotropic%20turbulence&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Albernaz,%20Daniel%20L.&rft.date=2016-12-01&rft.volume=28&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4972276&rft_dat=%3Cproquest_swepu%3E2121505026%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-d7e7b131b05ee28442ab99c3190f5cfb84e476e028506753a86c4800f66e5b6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121505026&rft_id=info:pmid/&rfr_iscdi=true |