Loading…
A Mobile-Based High Sensitivity On-Field Organophosphorus Compounds Detecting System for IoT-Based Food Safety Tracking
A mobile-based high sensitivity absorptiometer is presented to detect organophosphorus (OP) compounds for Internet-of-Things based food safety tracking. This instrument consists of a customized sensor front-end chip, LED-based light source, low power wireless link, and coin battery, along with a sam...
Saved in:
Published in: | Journal of sensors 2017-01, Vol.2017 (2017), p.1-13 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A mobile-based high sensitivity absorptiometer is presented to detect organophosphorus (OP) compounds for Internet-of-Things based food safety tracking. This instrument consists of a customized sensor front-end chip, LED-based light source, low power wireless link, and coin battery, along with a sample holder packaged in a recycled format. The sensor front-end integrates optical sensor, capacitive transimpedance amplifier, and a folded-reference pulse width modulator in a single chip fabricated in a 0.18 μm 1-poly 5-metal CMOS process and has input optical power dynamic range of 71 dB, sensitivity of 3.6 nW/cm2 (0.77 pA), and power consumption of 14.5 μW. Enabled by this high sensitivity sensor front-end chip, the proposed absorptiometer has a small size of 96 cm3, with features including on-field detection and wireless communication with a mobile. OP compound detection experiments of the handheld system demonstrate a limit of detection (LOD) of 0.4 μmol/L, comparable to that of a commercial spectrophotometer. Meanwhile, an android-based application (APP) is presented which makes the absorptiometer access to the Internet-of-Things (IoT). |
---|---|
ISSN: | 1687-725X 1687-7268 1687-7268 |
DOI: | 10.1155/2017/8797435 |