Loading…

Investigation of mass-transport limitations in the solid polymer fuel cell cathode. I. Mathematical model

In this paper, a one-dimensional, steady-state agglomerate model was used to describe the functioning and the mass transport limitations of the cathode in the solid polymer fuel cell (SPFC). This mathematical model is then compared to experimental results obtained on cathodes in an SPFC. The followi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2002-04, Vol.149 (4), p.A437-A447
Main Authors: JAOUEN, Frédéric, LINDBERGH, Göran, SUNDHOLM, Göran
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a one-dimensional, steady-state agglomerate model was used to describe the functioning and the mass transport limitations of the cathode in the solid polymer fuel cell (SPFC). This mathematical model is then compared to experimental results obtained on cathodes in an SPFC. The following processes were considered: Tafel kinetics of the oxygen reduction reaction, proton migration, oxygen diffusion in the agglomerates, and diffusion of a ternary gas mixture O sub 2 /N sub 2 /water vapor in the pores of the active layer and of the gas backing. The model shows that limitation by proton migration in the active layer or by oxygen diffusion in the agglomerates leads to a doubling of the Tafel slope at higher current densities. For those two types of transport limitations, the dependence of the reaction rate on the active-layer thickness, oxygen partial pressure, and relative humidity of the gas were simulated. When additional limitation due to slow gas phase diffusion appears, the double Tafel slope is distorted. A mathematical expression for the limiting current density due to this process is presented. By using this expression, it is possible to correct the polarization curves for slow gas phase diffusion.
ISSN:0013-4651
1945-7111
1945-7111
DOI:10.1149/1.1456916