Loading…

Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence

Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generat...

Full description

Saved in:
Bibliographic Details
Published in:Physical review fluids 2018-04, Vol.3 (4), Article 044605
Main Authors: Forooghi, Pourya, Stroh, Alexander, Schlatter, Philipp, Frohnapfel, Bettina
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Delta defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Delta = 0). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.
ISSN:2469-990X
2469-990X
DOI:10.1103/PhysRevFluids.3.044605