Loading…

Toward Practical Carrier Multiplication: Donor/Acceptor Codoped Si Nanocrystals in SiO2

Carrier multiplication (CM) is an interesting fundamental phenomenon with application potential in optoelectronics and photovoltaics, and it has been shown to be promoted by quantum confinement effects in nanostructures. However, mostly due to the short lifetimes of additional electron–hole (e-h) pa...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2018-07, Vol.5 (7), p.2843-2849
Main Authors: Chung, Nguyen Xuan, Limpens, Rens, de Weerd, Chris, Lesage, Arnon, Fujii, Minoru, Gregorkiewicz, Tom
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carrier multiplication (CM) is an interesting fundamental phenomenon with application potential in optoelectronics and photovoltaics, and it has been shown to be promoted by quantum confinement effects in nanostructures. However, mostly due to the short lifetimes of additional electron–hole (e-h) pairs generated by CM, major improvements of quantum dot devices that exploit CM are limited. Here we investigate CM in SiO2 solid state dispersions of phosphorus and boron codoped Si nanocrystals (NCs): an exotic variant of Si NCs whose photoluminescence (PL) emission energy, the optical bandgap, is significantly red-shifted in comparison to undoped Si NCs. By combining the results obtained by ultrafast induced absorption (IA) with PL quantum yield (PL QY) measurements, we demonstrate CM with a long (around 100 μs) lifetime of the additional e-h pairs created by the process, similar as previously reported for undoped Si NCs, but with a significantly lower CM threshold energy. This constitutes a significant step toward the practical implementation of Si-based NCs in optoelectronic devices: we demonstrate efficient CM at the energy bandgap optimal for photovoltaic conversion.
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.8b00144