Loading…

X-ray radiation hardness and influence on blinking in Si and CdSe quantum dots

We study the effect of X-ray irradiation on the photoluminescence (PL) efficiency and intermittency (blinking) of single Si/SiO2 and CdSe/CdZnS quantum dots (QDs). Our results show that the PL efficiency of Si nanocrystals is not significantly altered up to a cumulative fluence of 1020 photons/m2 (c...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-12, Vol.113 (25)
Main Authors: Pevere, Federico, von Treskow, Carl, Marino, Emanuele, Anwar, Monib, Bruhn, Benjamin, Sychugov, Ilya, Linnros, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the effect of X-ray irradiation on the photoluminescence (PL) efficiency and intermittency (blinking) of single Si/SiO2 and CdSe/CdZnS quantum dots (QDs). Our results show that the PL efficiency of Si nanocrystals is not significantly altered up to a cumulative fluence of 1020 photons/m2 (corresponding to ∼300 kGy of absorbed dose in SiO2), while CdSe particles become completely dark already after a 17 times lower fluence. In both types of QDs, the statistical nature of blinking ON- and OFF-times remains unaltered: mono-exponential for Si and power-law for CdSe QDs. However, the evolution of the blinking parameters with absorbed dose depends on the choice of material. On average, both ON- and OFF-time constants do not vary in Si nanocrystals, highlighting their radiation hardness. Instead, the ON-time exponent increases while the OFF-time exponent decreases with the increasing dose for CdSe dots, confirming their efficiency quenching. Ensemble measurements did not show PL spectral changes neither indicated removal of surface ligands in irradiated CdSe dots. Thus, ionization-generated non-radiative centers in the core-shell system modify blinking of CdSe dots and eventually rapidly quench their emission, in contrast to robust Si/SiO2 nanocrystals. Our study is important for the future use of luminescent QDs in harsh environments, such as space, and the engineering of their blinking properties via ionizing radiation.
ISSN:0003-6951
1077-3118
1077-3118
DOI:10.1063/1.5053885