Loading…

Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains

Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, lit...

Full description

Saved in:
Bibliographic Details
Published in:FEMS yeast research 2019-01, Vol.19 (1), p.1
Main Authors: Bracher, Jasmine M, Martinez-Rodriguez, Oscar A, Dekker, Wijb J C, Verhoeven, Maarten D, van Maris, Antonius J A, Pronk, Jack T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63
cites
container_end_page
container_issue 1
container_start_page 1
container_title FEMS yeast research
container_volume 19
creator Bracher, Jasmine M
Martinez-Rodriguez, Oscar A
Dekker, Wijb J C
Verhoeven, Maarten D
van Maris, Antonius J A
Pronk, Jack T
description Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.
doi_str_mv 10.1093/femsyr/foy104
format article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_249354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616047750</galeid><sourcerecordid>A616047750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqWwZIsssQGJtH4k9mRTaVRelSohtcDWcuzrGZfEbu1kaPj1OJqhdBDywo_73WP76BTFS4KPCW7YiYU-TfHEhong6lFxSGouSsJ49fjB-qB4ltI1xkRgvHhaHDBMa4o5PSx-XYJKCVLqwQ8oWBThdnQR5m1CNkSkvIIYWqfR3dSFBMhCnKtqcMGjdkLgV84DRDDvkA--hE3oNmDQldJ6rWLoJw0J6QxsXHIKUBqicj49L55Y1SV4sZuPim8fP3w9-1xefPl0fra8KHVdV0NpGkphoQ0HylurlBGmFaKBBreMADCjoNIGY1vRWmTS1JknNdZqsRCV4uyoKLe66SfcjK28ia5XcZJBOfnefV_KEFfyx7CWtGpYXWX-dMtnuAej81-j6vba9ivereUqbCSnFSaMZYE3O4EYbkdIg-xd0tB1ykMYk6SEUNLgBs_o63_Q6zBGn-3Ir8GY15wJ8ZdaqQ6k8zbke_UsKpeccFwJUeNMHf-HysNA73TwYF0-32t4u9eQmQHuhpUaU5LnV5f77M5EHUNKEey9HwTLOYhyG0S5DWLmXz008Z7-kzz2G25B3bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400656377</pqid></control><display><type>article</type><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</creator><creatorcontrib>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</creatorcontrib><description>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</description><identifier>ISSN: 1567-1364</identifier><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1093/femsyr/foy104</identifier><identifier>PMID: 30252062</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aldoses ; Ammonium ; Aspartate ; Biomass energy ; Bioreactors ; Carbon dioxide ; Carboxylation ; CRISPR ; Enzymes ; Fermentation ; Gene deletion ; Genetic research ; Genetically modified organisms ; Inoculum ; Lag phase ; Metabolic engineering ; Methods ; Mimicry ; Monosaccharides ; Observations ; Phosphates ; Physiological aspects ; Reductase ; Saccharomyces cerevisiae ; Transaldolase ; Transketolase ; Xylose ; Xylose isomerase ; Xylulokinase ; Yeast ; Yeasts (Fungi)</subject><ispartof>FEMS yeast research, 2019-01, Vol.19 (1), p.1</ispartof><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>FEMS 2018.</rights><rights>FEMS 2018. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240133/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240133/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30252062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249354$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bracher, Jasmine M</creatorcontrib><creatorcontrib>Martinez-Rodriguez, Oscar A</creatorcontrib><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Verhoeven, Maarten D</creatorcontrib><creatorcontrib>van Maris, Antonius J A</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</description><subject>Aldoses</subject><subject>Ammonium</subject><subject>Aspartate</subject><subject>Biomass energy</subject><subject>Bioreactors</subject><subject>Carbon dioxide</subject><subject>Carboxylation</subject><subject>CRISPR</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Gene deletion</subject><subject>Genetic research</subject><subject>Genetically modified organisms</subject><subject>Inoculum</subject><subject>Lag phase</subject><subject>Metabolic engineering</subject><subject>Methods</subject><subject>Mimicry</subject><subject>Monosaccharides</subject><subject>Observations</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Reductase</subject><subject>Saccharomyces cerevisiae</subject><subject>Transaldolase</subject><subject>Transketolase</subject><subject>Xylose</subject><subject>Xylose isomerase</subject><subject>Xylulokinase</subject><subject>Yeast</subject><subject>Yeasts (Fungi)</subject><issn>1567-1364</issn><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkktv1DAUhSMEoqWwZIsssQGJtH4k9mRTaVRelSohtcDWcuzrGZfEbu1kaPj1OJqhdBDywo_73WP76BTFS4KPCW7YiYU-TfHEhong6lFxSGouSsJ49fjB-qB4ltI1xkRgvHhaHDBMa4o5PSx-XYJKCVLqwQ8oWBThdnQR5m1CNkSkvIIYWqfR3dSFBMhCnKtqcMGjdkLgV84DRDDvkA--hE3oNmDQldJ6rWLoJw0J6QxsXHIKUBqicj49L55Y1SV4sZuPim8fP3w9-1xefPl0fra8KHVdV0NpGkphoQ0HylurlBGmFaKBBreMADCjoNIGY1vRWmTS1JknNdZqsRCV4uyoKLe66SfcjK28ia5XcZJBOfnefV_KEFfyx7CWtGpYXWX-dMtnuAej81-j6vba9ivereUqbCSnFSaMZYE3O4EYbkdIg-xd0tB1ykMYk6SEUNLgBs_o63_Q6zBGn-3Ir8GY15wJ8ZdaqQ6k8zbke_UsKpeccFwJUeNMHf-HysNA73TwYF0-32t4u9eQmQHuhpUaU5LnV5f77M5EHUNKEey9HwTLOYhyG0S5DWLmXz008Z7-kzz2G25B3bg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bracher, Jasmine M</creator><creator>Martinez-Rodriguez, Oscar A</creator><creator>Dekker, Wijb J C</creator><creator>Verhoeven, Maarten D</creator><creator>van Maris, Antonius J A</creator><creator>Pronk, Jack T</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20190101</creationdate><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><author>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aldoses</topic><topic>Ammonium</topic><topic>Aspartate</topic><topic>Biomass energy</topic><topic>Bioreactors</topic><topic>Carbon dioxide</topic><topic>Carboxylation</topic><topic>CRISPR</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Gene deletion</topic><topic>Genetic research</topic><topic>Genetically modified organisms</topic><topic>Inoculum</topic><topic>Lag phase</topic><topic>Metabolic engineering</topic><topic>Methods</topic><topic>Mimicry</topic><topic>Monosaccharides</topic><topic>Observations</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Reductase</topic><topic>Saccharomyces cerevisiae</topic><topic>Transaldolase</topic><topic>Transketolase</topic><topic>Xylose</topic><topic>Xylose isomerase</topic><topic>Xylulokinase</topic><topic>Yeast</topic><topic>Yeasts (Fungi)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bracher, Jasmine M</creatorcontrib><creatorcontrib>Martinez-Rodriguez, Oscar A</creatorcontrib><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Verhoeven, Maarten D</creatorcontrib><creatorcontrib>van Maris, Antonius J A</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bracher, Jasmine M</au><au>Martinez-Rodriguez, Oscar A</au><au>Dekker, Wijb J C</au><au>Verhoeven, Maarten D</au><au>van Maris, Antonius J A</au><au>Pronk, Jack T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1567-1364</issn><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30252062</pmid><doi>10.1093/femsyr/foy104</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-1364
ispartof FEMS yeast research, 2019-01, Vol.19 (1), p.1
issn 1567-1364
1567-1356
1567-1364
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_249354
source Open Access: Oxford University Press Open Journals; PubMed Central
subjects Aldoses
Ammonium
Aspartate
Biomass energy
Bioreactors
Carbon dioxide
Carboxylation
CRISPR
Enzymes
Fermentation
Gene deletion
Genetic research
Genetically modified organisms
Inoculum
Lag phase
Metabolic engineering
Methods
Mimicry
Monosaccharides
Observations
Phosphates
Physiological aspects
Reductase
Saccharomyces cerevisiae
Transaldolase
Transketolase
Xylose
Xylose isomerase
Xylulokinase
Yeast
Yeasts (Fungi)
title Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reassessment%20of%20requirements%20for%20anaerobic%20xylose%20fermentation%20by%20engineered,%20non-evolved%20Saccharomyces%20cerevisiae%20strains&rft.jtitle=FEMS%20yeast%20research&rft.au=Bracher,%20Jasmine%20M&rft.date=2019-01-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1567-1364&rft.eissn=1567-1364&rft_id=info:doi/10.1093/femsyr/foy104&rft_dat=%3Cgale_swepu%3EA616047750%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400656377&rft_id=info:pmid/30252062&rft_galeid=A616047750&rfr_iscdi=true