Loading…
Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains
Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, lit...
Saved in:
Published in: | FEMS yeast research 2019-01, Vol.19 (1), p.1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | 1 |
container_title | FEMS yeast research |
container_volume | 19 |
creator | Bracher, Jasmine M Martinez-Rodriguez, Oscar A Dekker, Wijb J C Verhoeven, Maarten D van Maris, Antonius J A Pronk, Jack T |
description | Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose. |
doi_str_mv | 10.1093/femsyr/foy104 |
format | article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_249354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616047750</galeid><sourcerecordid>A616047750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqWwZIsssQGJtH4k9mRTaVRelSohtcDWcuzrGZfEbu1kaPj1OJqhdBDywo_73WP76BTFS4KPCW7YiYU-TfHEhong6lFxSGouSsJ49fjB-qB4ltI1xkRgvHhaHDBMa4o5PSx-XYJKCVLqwQ8oWBThdnQR5m1CNkSkvIIYWqfR3dSFBMhCnKtqcMGjdkLgV84DRDDvkA--hE3oNmDQldJ6rWLoJw0J6QxsXHIKUBqicj49L55Y1SV4sZuPim8fP3w9-1xefPl0fra8KHVdV0NpGkphoQ0HylurlBGmFaKBBreMADCjoNIGY1vRWmTS1JknNdZqsRCV4uyoKLe66SfcjK28ia5XcZJBOfnefV_KEFfyx7CWtGpYXWX-dMtnuAej81-j6vba9ivereUqbCSnFSaMZYE3O4EYbkdIg-xd0tB1ykMYk6SEUNLgBs_o63_Q6zBGn-3Ir8GY15wJ8ZdaqQ6k8zbke_UsKpeccFwJUeNMHf-HysNA73TwYF0-32t4u9eQmQHuhpUaU5LnV5f77M5EHUNKEey9HwTLOYhyG0S5DWLmXz008Z7-kzz2G25B3bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400656377</pqid></control><display><type>article</type><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</creator><creatorcontrib>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</creatorcontrib><description>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</description><identifier>ISSN: 1567-1364</identifier><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1093/femsyr/foy104</identifier><identifier>PMID: 30252062</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aldoses ; Ammonium ; Aspartate ; Biomass energy ; Bioreactors ; Carbon dioxide ; Carboxylation ; CRISPR ; Enzymes ; Fermentation ; Gene deletion ; Genetic research ; Genetically modified organisms ; Inoculum ; Lag phase ; Metabolic engineering ; Methods ; Mimicry ; Monosaccharides ; Observations ; Phosphates ; Physiological aspects ; Reductase ; Saccharomyces cerevisiae ; Transaldolase ; Transketolase ; Xylose ; Xylose isomerase ; Xylulokinase ; Yeast ; Yeasts (Fungi)</subject><ispartof>FEMS yeast research, 2019-01, Vol.19 (1), p.1</ispartof><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>FEMS 2018.</rights><rights>FEMS 2018. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240133/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240133/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30252062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249354$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bracher, Jasmine M</creatorcontrib><creatorcontrib>Martinez-Rodriguez, Oscar A</creatorcontrib><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Verhoeven, Maarten D</creatorcontrib><creatorcontrib>van Maris, Antonius J A</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</description><subject>Aldoses</subject><subject>Ammonium</subject><subject>Aspartate</subject><subject>Biomass energy</subject><subject>Bioreactors</subject><subject>Carbon dioxide</subject><subject>Carboxylation</subject><subject>CRISPR</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Gene deletion</subject><subject>Genetic research</subject><subject>Genetically modified organisms</subject><subject>Inoculum</subject><subject>Lag phase</subject><subject>Metabolic engineering</subject><subject>Methods</subject><subject>Mimicry</subject><subject>Monosaccharides</subject><subject>Observations</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Reductase</subject><subject>Saccharomyces cerevisiae</subject><subject>Transaldolase</subject><subject>Transketolase</subject><subject>Xylose</subject><subject>Xylose isomerase</subject><subject>Xylulokinase</subject><subject>Yeast</subject><subject>Yeasts (Fungi)</subject><issn>1567-1364</issn><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkktv1DAUhSMEoqWwZIsssQGJtH4k9mRTaVRelSohtcDWcuzrGZfEbu1kaPj1OJqhdBDywo_73WP76BTFS4KPCW7YiYU-TfHEhong6lFxSGouSsJ49fjB-qB4ltI1xkRgvHhaHDBMa4o5PSx-XYJKCVLqwQ8oWBThdnQR5m1CNkSkvIIYWqfR3dSFBMhCnKtqcMGjdkLgV84DRDDvkA--hE3oNmDQldJ6rWLoJw0J6QxsXHIKUBqicj49L55Y1SV4sZuPim8fP3w9-1xefPl0fra8KHVdV0NpGkphoQ0HylurlBGmFaKBBreMADCjoNIGY1vRWmTS1JknNdZqsRCV4uyoKLe66SfcjK28ia5XcZJBOfnefV_KEFfyx7CWtGpYXWX-dMtnuAej81-j6vba9ivereUqbCSnFSaMZYE3O4EYbkdIg-xd0tB1ykMYk6SEUNLgBs_o63_Q6zBGn-3Ir8GY15wJ8ZdaqQ6k8zbke_UsKpeccFwJUeNMHf-HysNA73TwYF0-32t4u9eQmQHuhpUaU5LnV5f77M5EHUNKEey9HwTLOYhyG0S5DWLmXz008Z7-kzz2G25B3bg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bracher, Jasmine M</creator><creator>Martinez-Rodriguez, Oscar A</creator><creator>Dekker, Wijb J C</creator><creator>Verhoeven, Maarten D</creator><creator>van Maris, Antonius J A</creator><creator>Pronk, Jack T</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20190101</creationdate><title>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</title><author>Bracher, Jasmine M ; Martinez-Rodriguez, Oscar A ; Dekker, Wijb J C ; Verhoeven, Maarten D ; van Maris, Antonius J A ; Pronk, Jack T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aldoses</topic><topic>Ammonium</topic><topic>Aspartate</topic><topic>Biomass energy</topic><topic>Bioreactors</topic><topic>Carbon dioxide</topic><topic>Carboxylation</topic><topic>CRISPR</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Gene deletion</topic><topic>Genetic research</topic><topic>Genetically modified organisms</topic><topic>Inoculum</topic><topic>Lag phase</topic><topic>Metabolic engineering</topic><topic>Methods</topic><topic>Mimicry</topic><topic>Monosaccharides</topic><topic>Observations</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Reductase</topic><topic>Saccharomyces cerevisiae</topic><topic>Transaldolase</topic><topic>Transketolase</topic><topic>Xylose</topic><topic>Xylose isomerase</topic><topic>Xylulokinase</topic><topic>Yeast</topic><topic>Yeasts (Fungi)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bracher, Jasmine M</creatorcontrib><creatorcontrib>Martinez-Rodriguez, Oscar A</creatorcontrib><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Verhoeven, Maarten D</creatorcontrib><creatorcontrib>van Maris, Antonius J A</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bracher, Jasmine M</au><au>Martinez-Rodriguez, Oscar A</au><au>Dekker, Wijb J C</au><au>Verhoeven, Maarten D</au><au>van Maris, Antonius J A</au><au>Pronk, Jack T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1567-1364</issn><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30252062</pmid><doi>10.1093/femsyr/foy104</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-1364 |
ispartof | FEMS yeast research, 2019-01, Vol.19 (1), p.1 |
issn | 1567-1364 1567-1356 1567-1364 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_249354 |
source | Open Access: Oxford University Press Open Journals; PubMed Central |
subjects | Aldoses Ammonium Aspartate Biomass energy Bioreactors Carbon dioxide Carboxylation CRISPR Enzymes Fermentation Gene deletion Genetic research Genetically modified organisms Inoculum Lag phase Metabolic engineering Methods Mimicry Monosaccharides Observations Phosphates Physiological aspects Reductase Saccharomyces cerevisiae Transaldolase Transketolase Xylose Xylose isomerase Xylulokinase Yeast Yeasts (Fungi) |
title | Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reassessment%20of%20requirements%20for%20anaerobic%20xylose%20fermentation%20by%20engineered,%20non-evolved%20Saccharomyces%20cerevisiae%20strains&rft.jtitle=FEMS%20yeast%20research&rft.au=Bracher,%20Jasmine%20M&rft.date=2019-01-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1567-1364&rft.eissn=1567-1364&rft_id=info:doi/10.1093/femsyr/foy104&rft_dat=%3Cgale_swepu%3EA616047750%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-d922e8cd6e26bfaad7db779e90b31ee3dae4cd00f42572e8d522e150ca8874a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400656377&rft_id=info:pmid/30252062&rft_galeid=A616047750&rfr_iscdi=true |