Loading…

A statistical model for wake meandering behind wind turbines

A new wake model is proposed to account for wake meandering in simulations of wind-turbine wakes performed on steady solvers, through a wake-meandering description based on the dispersion theory of Taylor (1921, P. Lond. Math Soc., vol. 20, pp. 196–211). Single-turbine simulations were performed by...

Full description

Saved in:
Bibliographic Details
Published in:Journal of wind engineering and industrial aerodynamics 2019-10, Vol.193, p.103954, Article 103954
Main Authors: Braunbehrens, Robert, Segalini, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new wake model is proposed to account for wake meandering in simulations of wind-turbine wakes performed on steady solvers, through a wake-meandering description based on the dispersion theory of Taylor (1921, P. Lond. Math Soc., vol. 20, pp. 196–211). Single-turbine simulations were performed by means of the linearised solver ORFEUS. By analysing the steady wake behind a turbine, a set of parameters describing the wake was first obtained and synthesised into a look-up table. The proposed meandering model extended the simulation results by superimposing the lateral and vertical meandering motions to the steady wake. As a result, the time-averaged velocity distribution of the wake was increased in width and reduced in intensity. Through this combination, the model provides rationale for the wake-deficit decrease and for the power underestimation effects of several wake models. The new wake model is validated against the Lillgrund and Horns Rev data sets.
ISSN:0167-6105
1872-8197
1872-8197
DOI:10.1016/j.jweia.2019.103954