Loading…

Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers

Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long u...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2020-02, Vol.46 (2), p.2072-2078
Main Authors: Choopani, Saeed, Samavat, Feridoun, Kolobova, Elena N., Grishin, Alexander M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3
cites cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3
container_end_page 2078
container_issue 2
container_start_page 2072
container_title Ceramics international
container_volume 46
creator Choopani, Saeed
Samavat, Feridoun
Kolobova, Elena N.
Grishin, Alexander M.
description Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.
doi_str_mv 10.1016/j.ceramint.2019.09.187
format article
fullrecord <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_263252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884219327245</els_id><sourcerecordid>S0272884219327245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCigvkOCfJo5vrQoFRNVeAImTtXE2rUsSR3YA9e1JVeDKYXel1cxI8xFyzWjCKMtudolBD41t-4RTphKqEpbLEzIatoiFSrNTMqJc8jjPJ_ycXISwo4NRTeiINAv03jWwabG3JvIYXAutwQjaMvp7Q2uD673r9pFto8I645oOelvUGL2JBaZrxqcroEn6NMyqWIvIOI9x2GJdR0Ogq2yBPlySswrqgFc_d0xeFnfP84d4ub5_nM-WsRGC8RiEyLFkxnBZQZbmoBQrpABUFQeZT5iqGDLJGPIMc8EpFxIEVyVwSbOqEGMSH3PDF3Yfhe68bcDvtQOrb-3rTDu_0e_9VvNM8JQP-uyoN96F4LH6czCqD5D1Tv9C1gfImip9wDsm06MRhzafFr0OxuLAr7QeTa9LZ_-L-AYSS4ky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><source>ScienceDirect Freedom Collection</source><creator>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</creator><creatorcontrib>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</creatorcontrib><description>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</description><identifier>ISSN: 0272-8842</identifier><identifier>ISSN: 1873-3956</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2019.09.187</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy parameters ; Biocompatibility ; Clinical application ; Coaxial electrospinning ; Core-shell fibers ; Core-shell nanofibers ; Electrospinning ; Ferromagnetic materials ; Ferromagnetic resonance ; Ferromagnetic resonance (FMR) ; Ferromagnetism ; Fibers ; Magnetic anisotropy ; Magnetic fields ; Magnetic force microscopies (MFM) ; Magnetic force microscopy ; Microwave absorption ; Nanofibers ; Saturation magnetization ; Scanning electron microscopy ; Shells (structures)</subject><ispartof>Ceramics international, 2020-02, Vol.46 (2), p.2072-2078</ispartof><rights>2019 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</citedby><cites>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263252$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Choopani, Saeed</creatorcontrib><creatorcontrib>Samavat, Feridoun</creatorcontrib><creatorcontrib>Kolobova, Elena N.</creatorcontrib><creatorcontrib>Grishin, Alexander M.</creatorcontrib><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><title>Ceramics international</title><description>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</description><subject>Anisotropy parameters</subject><subject>Biocompatibility</subject><subject>Clinical application</subject><subject>Coaxial electrospinning</subject><subject>Core-shell fibers</subject><subject>Core-shell nanofibers</subject><subject>Electrospinning</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetic resonance (FMR)</subject><subject>Ferromagnetism</subject><subject>Fibers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopies (MFM)</subject><subject>Magnetic force microscopy</subject><subject>Microwave absorption</subject><subject>Nanofibers</subject><subject>Saturation magnetization</subject><subject>Scanning electron microscopy</subject><subject>Shells (structures)</subject><issn>0272-8842</issn><issn>1873-3956</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCigvkOCfJo5vrQoFRNVeAImTtXE2rUsSR3YA9e1JVeDKYXel1cxI8xFyzWjCKMtudolBD41t-4RTphKqEpbLEzIatoiFSrNTMqJc8jjPJ_ycXISwo4NRTeiINAv03jWwabG3JvIYXAutwQjaMvp7Q2uD673r9pFto8I645oOelvUGL2JBaZrxqcroEn6NMyqWIvIOI9x2GJdR0Ogq2yBPlySswrqgFc_d0xeFnfP84d4ub5_nM-WsRGC8RiEyLFkxnBZQZbmoBQrpABUFQeZT5iqGDLJGPIMc8EpFxIEVyVwSbOqEGMSH3PDF3Yfhe68bcDvtQOrb-3rTDu_0e_9VvNM8JQP-uyoN96F4LH6czCqD5D1Tv9C1gfImip9wDsm06MRhzafFr0OxuLAr7QeTa9LZ_-L-AYSS4ky</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Choopani, Saeed</creator><creator>Samavat, Feridoun</creator><creator>Kolobova, Elena N.</creator><creator>Grishin, Alexander M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20200201</creationdate><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><author>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy parameters</topic><topic>Biocompatibility</topic><topic>Clinical application</topic><topic>Coaxial electrospinning</topic><topic>Core-shell fibers</topic><topic>Core-shell nanofibers</topic><topic>Electrospinning</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetic resonance (FMR)</topic><topic>Ferromagnetism</topic><topic>Fibers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopies (MFM)</topic><topic>Magnetic force microscopy</topic><topic>Microwave absorption</topic><topic>Nanofibers</topic><topic>Saturation magnetization</topic><topic>Scanning electron microscopy</topic><topic>Shells (structures)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choopani, Saeed</creatorcontrib><creatorcontrib>Samavat, Feridoun</creatorcontrib><creatorcontrib>Kolobova, Elena N.</creatorcontrib><creatorcontrib>Grishin, Alexander M.</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choopani, Saeed</au><au>Samavat, Feridoun</au><au>Kolobova, Elena N.</au><au>Grishin, Alexander M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</atitle><jtitle>Ceramics international</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>46</volume><issue>2</issue><spage>2072</spage><epage>2078</epage><pages>2072-2078</pages><issn>0272-8842</issn><issn>1873-3956</issn><eissn>1873-3956</eissn><abstract>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2019.09.187</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2020-02, Vol.46 (2), p.2072-2078
issn 0272-8842
1873-3956
1873-3956
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_263252
source ScienceDirect Freedom Collection
subjects Anisotropy parameters
Biocompatibility
Clinical application
Coaxial electrospinning
Core-shell fibers
Core-shell nanofibers
Electrospinning
Ferromagnetic materials
Ferromagnetic resonance
Ferromagnetic resonance (FMR)
Ferromagnetism
Fibers
Magnetic anisotropy
Magnetic fields
Magnetic force microscopies (MFM)
Magnetic force microscopy
Microwave absorption
Nanofibers
Saturation magnetization
Scanning electron microscopy
Shells (structures)
title Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20resonance%20and%20magnetic%20anisotropy%20in%20biocompatible%20Y3Fe5O12@Na0.5K0.5NbO3%20core-shell%20nanofibers&rft.jtitle=Ceramics%20international&rft.au=Choopani,%20Saeed&rft.date=2020-02-01&rft.volume=46&rft.issue=2&rft.spage=2072&rft.epage=2078&rft.pages=2072-2078&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2019.09.187&rft_dat=%3Celsevier_swepu%3ES0272884219327245%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true