Loading…
Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers
Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long u...
Saved in:
Published in: | Ceramics international 2020-02, Vol.46 (2), p.2072-2078 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3 |
container_end_page | 2078 |
container_issue | 2 |
container_start_page | 2072 |
container_title | Ceramics international |
container_volume | 46 |
creator | Choopani, Saeed Samavat, Feridoun Kolobova, Elena N. Grishin, Alexander M. |
description | Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers. |
doi_str_mv | 10.1016/j.ceramint.2019.09.187 |
format | article |
fullrecord | <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_263252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884219327245</els_id><sourcerecordid>S0272884219327245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCigvkOCfJo5vrQoFRNVeAImTtXE2rUsSR3YA9e1JVeDKYXel1cxI8xFyzWjCKMtudolBD41t-4RTphKqEpbLEzIatoiFSrNTMqJc8jjPJ_ycXISwo4NRTeiINAv03jWwabG3JvIYXAutwQjaMvp7Q2uD673r9pFto8I645oOelvUGL2JBaZrxqcroEn6NMyqWIvIOI9x2GJdR0Ogq2yBPlySswrqgFc_d0xeFnfP84d4ub5_nM-WsRGC8RiEyLFkxnBZQZbmoBQrpABUFQeZT5iqGDLJGPIMc8EpFxIEVyVwSbOqEGMSH3PDF3Yfhe68bcDvtQOrb-3rTDu_0e_9VvNM8JQP-uyoN96F4LH6czCqD5D1Tv9C1gfImip9wDsm06MRhzafFr0OxuLAr7QeTa9LZ_-L-AYSS4ky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><source>ScienceDirect Freedom Collection</source><creator>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</creator><creatorcontrib>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</creatorcontrib><description>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</description><identifier>ISSN: 0272-8842</identifier><identifier>ISSN: 1873-3956</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2019.09.187</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy parameters ; Biocompatibility ; Clinical application ; Coaxial electrospinning ; Core-shell fibers ; Core-shell nanofibers ; Electrospinning ; Ferromagnetic materials ; Ferromagnetic resonance ; Ferromagnetic resonance (FMR) ; Ferromagnetism ; Fibers ; Magnetic anisotropy ; Magnetic fields ; Magnetic force microscopies (MFM) ; Magnetic force microscopy ; Microwave absorption ; Nanofibers ; Saturation magnetization ; Scanning electron microscopy ; Shells (structures)</subject><ispartof>Ceramics international, 2020-02, Vol.46 (2), p.2072-2078</ispartof><rights>2019 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</citedby><cites>FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263252$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Choopani, Saeed</creatorcontrib><creatorcontrib>Samavat, Feridoun</creatorcontrib><creatorcontrib>Kolobova, Elena N.</creatorcontrib><creatorcontrib>Grishin, Alexander M.</creatorcontrib><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><title>Ceramics international</title><description>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</description><subject>Anisotropy parameters</subject><subject>Biocompatibility</subject><subject>Clinical application</subject><subject>Coaxial electrospinning</subject><subject>Core-shell fibers</subject><subject>Core-shell nanofibers</subject><subject>Electrospinning</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetic resonance (FMR)</subject><subject>Ferromagnetism</subject><subject>Fibers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopies (MFM)</subject><subject>Magnetic force microscopy</subject><subject>Microwave absorption</subject><subject>Nanofibers</subject><subject>Saturation magnetization</subject><subject>Scanning electron microscopy</subject><subject>Shells (structures)</subject><issn>0272-8842</issn><issn>1873-3956</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCigvkOCfJo5vrQoFRNVeAImTtXE2rUsSR3YA9e1JVeDKYXel1cxI8xFyzWjCKMtudolBD41t-4RTphKqEpbLEzIatoiFSrNTMqJc8jjPJ_ycXISwo4NRTeiINAv03jWwabG3JvIYXAutwQjaMvp7Q2uD673r9pFto8I645oOelvUGL2JBaZrxqcroEn6NMyqWIvIOI9x2GJdR0Ogq2yBPlySswrqgFc_d0xeFnfP84d4ub5_nM-WsRGC8RiEyLFkxnBZQZbmoBQrpABUFQeZT5iqGDLJGPIMc8EpFxIEVyVwSbOqEGMSH3PDF3Yfhe68bcDvtQOrb-3rTDu_0e_9VvNM8JQP-uyoN96F4LH6czCqD5D1Tv9C1gfImip9wDsm06MRhzafFr0OxuLAr7QeTa9LZ_-L-AYSS4ky</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Choopani, Saeed</creator><creator>Samavat, Feridoun</creator><creator>Kolobova, Elena N.</creator><creator>Grishin, Alexander M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20200201</creationdate><title>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</title><author>Choopani, Saeed ; Samavat, Feridoun ; Kolobova, Elena N. ; Grishin, Alexander M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy parameters</topic><topic>Biocompatibility</topic><topic>Clinical application</topic><topic>Coaxial electrospinning</topic><topic>Core-shell fibers</topic><topic>Core-shell nanofibers</topic><topic>Electrospinning</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetic resonance (FMR)</topic><topic>Ferromagnetism</topic><topic>Fibers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopies (MFM)</topic><topic>Magnetic force microscopy</topic><topic>Microwave absorption</topic><topic>Nanofibers</topic><topic>Saturation magnetization</topic><topic>Scanning electron microscopy</topic><topic>Shells (structures)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choopani, Saeed</creatorcontrib><creatorcontrib>Samavat, Feridoun</creatorcontrib><creatorcontrib>Kolobova, Elena N.</creatorcontrib><creatorcontrib>Grishin, Alexander M.</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choopani, Saeed</au><au>Samavat, Feridoun</au><au>Kolobova, Elena N.</au><au>Grishin, Alexander M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers</atitle><jtitle>Ceramics international</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>46</volume><issue>2</issue><spage>2072</spage><epage>2078</epage><pages>2072-2078</pages><issn>0272-8842</issn><issn>1873-3956</issn><eissn>1873-3956</eissn><abstract>Y3Fe5O12@Na0.5K0.5NbO3 (YIG@NKN) core-shell nanofibers were synthesized by the coaxial electrospinning technique. For comparison, samples of YIG and NKN nanofibers were prepared. Scanning Electron Microscopy (SEM) and 3D laser-scanning confocal microscopy (TDLM) of YIG@NKN nanofibers revealed long uniform size distributed fibers with the average diameter of 100–150 nm. X-Ray diffraction (XRD) examination shows the existence of the distinct peaks of orthorhombic NKN and cubic YIG. Magnetic force microscopy (MFM) of individual YIG@NKN nanofiber demonstrates a magnetic core that is extended in one half of the diameter of the fiber. These nanofibers show obvious Ferromagnetic resonance (FMR) with resonance near 2 KOe similar to YIG fibers but in such a way that it starts to increase linearly with applying magnetic field from zero up to near resonance field. Also they show a soft magnetic behavior with saturation magnetization of 10 emu/gr. Furthermore, we propose a model to explain line shape of randomly oriented fibers and extract all the magnetic anisotropy parameters from FMR data. The results rely the shape anisotropy as dominant effect, however the dipolar field among fibers should be considered. The highest degree of asymmetry observed in the case of core-shell fibers in hard direction that it can be originated from magneto electric effects. By taking into account the observed FMR, the ability of adequate control of microwave absorption by applying magnetic field and biocompatibility, the synthesized core-shell nanofibers are the most promising candidate for clinical application such as microwave cancer thermotherapy and adjustable microwave absorbers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2019.09.187</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8842 |
ispartof | Ceramics international, 2020-02, Vol.46 (2), p.2072-2078 |
issn | 0272-8842 1873-3956 1873-3956 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_263252 |
source | ScienceDirect Freedom Collection |
subjects | Anisotropy parameters Biocompatibility Clinical application Coaxial electrospinning Core-shell fibers Core-shell nanofibers Electrospinning Ferromagnetic materials Ferromagnetic resonance Ferromagnetic resonance (FMR) Ferromagnetism Fibers Magnetic anisotropy Magnetic fields Magnetic force microscopies (MFM) Magnetic force microscopy Microwave absorption Nanofibers Saturation magnetization Scanning electron microscopy Shells (structures) |
title | Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20resonance%20and%20magnetic%20anisotropy%20in%20biocompatible%20Y3Fe5O12@Na0.5K0.5NbO3%20core-shell%20nanofibers&rft.jtitle=Ceramics%20international&rft.au=Choopani,%20Saeed&rft.date=2020-02-01&rft.volume=46&rft.issue=2&rft.spage=2072&rft.epage=2078&rft.pages=2072-2078&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2019.09.187&rft_dat=%3Celsevier_swepu%3ES0272884219327245%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3312-a338ed1cc27fa658a991b73ae9f2a78419f1e1711e26e8320237a329da2706fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |