Loading…
Colossal Enhancement of Near-Field Thermal Radiation Across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling
Coupling modes between surface plasmon polaritons (SPPs) and surface phonon polaritons (SPhPs) play a vital role in enhancing near-field thermal radiation but are relatively unexplored, and no experimental result is available. Here, we consider the NFTR enhancement between two identical graphene-cov...
Saved in:
Published in: | Nano letters 2019-11, Vol.19 (11), p.8082-8088 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coupling modes between surface plasmon polaritons (SPPs) and surface phonon polaritons (SPhPs) play a vital role in enhancing near-field thermal radiation but are relatively unexplored, and no experimental result is available. Here, we consider the NFTR enhancement between two identical graphene-covered SiO2 heterostructures with millimeter-scale surface area and report an experimentally record-breaking ∼64-fold enhancement compared to blackbody (BB) limit at a gap distance of 170 nm. The energy transmission coefficient and radiation spectra show that the physical mechanism behind the colossal enhancement is the coupling between the surface plasmon and phonon polaritons. |
---|---|
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b03269 |