Loading…
NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories
Data copy is a widely-used memory operation in many programs and operating system services. In conventional computers, data copy is often carried out by two separate read and write transactions that pass data back and forth between the DRAM chip and the processor chip. Some prior mechanisms propose...
Saved in:
Published in: | IEEE computer architecture letters 2020-01, Vol.19 (1), p.80-83 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data copy is a widely-used memory operation in many programs and operating system services. In conventional computers, data copy is often carried out by two separate read and write transactions that pass data back and forth between the DRAM chip and the processor chip. Some prior mechanisms propose to avoid this unnecessary data movement by using the shared internal bus in the DRAM chip to directly copy data within the DRAM chip (e.g., between two DRAM banks). While these methods exhibit superior performance compared to conventional techniques, data copy across different DRAM banks is still greatly slower than data copy within the same DRAM bank. Hence, these techniques have limited benefit for the emerging 3D-stacked memories (e.g., HMC and HBM) that contain hundreds of DRAM banks across multiple memory controllers. In this paper, we present Network-on-Memory (NoM), a lightweight inter-bank data communication scheme that enables direct data copy across both memory banks of a 3D-stacked memory. NoM adopts a TDM-based circuit-switching design, where circuit setup is done by the memory controller. Compared to state-of-the-art approaches, NoM enables both fast data copy between multiple DRAM banks and concurrent data transfer operations. Our evaluation shows that NoM improves the performance of data-intensive workloads by 3.8X and 75 percent, on average, compared to the baseline conventional 3D-stacked DRAM architecture and state-of-the-art techniques, respectively. |
---|---|
ISSN: | 1556-6056 1556-6064 |
DOI: | 10.1109/LCA.2020.2990599 |