Loading…

Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys

We design high entropy alloys (HEAs) with different induction elements (Si/Al/Sn). In order to keep the crystal structure invariant and to investigate how the increment in saturation magnetization (Ms) is caused only by the change of electron spin state, each set of HEAs contains a different amount...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science & technology 2021-03, Vol.68, p.124-131
Main Authors: Zhang, Bin, Duan, Yuping, Zhang, Haifeng, Huang, Shuo, Ma, Guojia, Wang, Tongmin, Dong, Xinglong, Jia, Nan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 131
container_issue
container_start_page 124
container_title Journal of materials science & technology
container_volume 68
creator Zhang, Bin
Duan, Yuping
Zhang, Haifeng
Huang, Shuo
Ma, Guojia
Wang, Tongmin
Dong, Xinglong
Jia, Nan
description We design high entropy alloys (HEAs) with different induction elements (Si/Al/Sn). In order to keep the crystal structure invariant and to investigate how the increment in saturation magnetization (Ms) is caused only by the change of electron spin state, each set of HEAs contains a different amount of Mn. Synergistic effects among induction elements that induce the magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism are found. Ms of added Mn reduces when a particular induction element (Si0.4/Al0.4/Sn0.4) exists, while a larger increment of Ms appears when two induction elements coexist, Si0.4Al0.4 (25.79 emu/g) and Sn0.4Al0.4 (15.43 emu/g). This is reflected in the microcosmic magnetic structure for the emergence of closed domains due to large demagnetization energy, which is confirmed by the Lorentz transmission electron microscope (LTEM) data. The calculated magnetic moments and the exchange integral constants from density functional theory based on the Exact Muffin-Tin Orbits formalism reveal that the magnetic state and the strength of ferromagnetic and anti-ferromagnetic coupling determine the variation of Ms in different chemical environments. The difference in energy levels of coexisting multiple induction elements also leads to a larger increment of Ms, Si0.4Al0.4Sn0.4 (29.78 emu/g), and Si0.4Al0.4Ge0.4Sn0.4 (31.00 emu/g).
doi_str_mv 10.1016/j.jmst.2020.06.040
format article
fullrecord <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_285253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1005030220306824</els_id><sourcerecordid>S1005030220306824</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1613-dfeb481170fb4b6fb9c0563f25bb00c37388d5ec70545e267ce4bbd13b11137f3</originalsourceid><addsrcrecordid>eNpdkD1v2zAURYUgAfL5BzK9MQEs9VEUJQVoBsOp3QJxMqTtkIUQpUebrkQaJJvWU_96ZThTpnfxcHBxcZLkmmHGkJWfNtlmCDHLMccMywwLPErO2F3BUsbK_HjMiCJFjvlpch7CBpFXoq7Pkn_LZmUpmhaib2zQzg9NNM6C07C0oL0boLHRpJr8mA9wGCA6-PAxFuY0c0_mdWn_ws0r3MOLmcC0n8CLncCCbmFtVmsgG73b7qDpe7cLl8mJbvpAV-_3Ivkx__J99jV9fF58m00fU2Il42mnSRU1YxVqVahSq7sWRcl1LpRCbHnF67oT1FYoCkF5WbVUKNUxrhhjvNL8IkkPveEPbX8rufVmaPxOusbIB_NzKp1fyV9xLfNa5IKP_OcDT-OoN0NehtaQbakzntooO2ckQ7mXLzdyL1_u5Uss5Sif_wefOXpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys</title><source>ScienceDirect Journals</source><creator>Zhang, Bin ; Duan, Yuping ; Zhang, Haifeng ; Huang, Shuo ; Ma, Guojia ; Wang, Tongmin ; Dong, Xinglong ; Jia, Nan</creator><creatorcontrib>Zhang, Bin ; Duan, Yuping ; Zhang, Haifeng ; Huang, Shuo ; Ma, Guojia ; Wang, Tongmin ; Dong, Xinglong ; Jia, Nan</creatorcontrib><description>We design high entropy alloys (HEAs) with different induction elements (Si/Al/Sn). In order to keep the crystal structure invariant and to investigate how the increment in saturation magnetization (Ms) is caused only by the change of electron spin state, each set of HEAs contains a different amount of Mn. Synergistic effects among induction elements that induce the magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism are found. Ms of added Mn reduces when a particular induction element (Si0.4/Al0.4/Sn0.4) exists, while a larger increment of Ms appears when two induction elements coexist, Si0.4Al0.4 (25.79 emu/g) and Sn0.4Al0.4 (15.43 emu/g). This is reflected in the microcosmic magnetic structure for the emergence of closed domains due to large demagnetization energy, which is confirmed by the Lorentz transmission electron microscope (LTEM) data. The calculated magnetic moments and the exchange integral constants from density functional theory based on the Exact Muffin-Tin Orbits formalism reveal that the magnetic state and the strength of ferromagnetic and anti-ferromagnetic coupling determine the variation of Ms in different chemical environments. The difference in energy levels of coexisting multiple induction elements also leads to a larger increment of Ms, Si0.4Al0.4Sn0.4 (29.78 emu/g), and Si0.4Al0.4Ge0.4Sn0.4 (31.00 emu/g).</description><identifier>ISSN: 1005-0302</identifier><identifier>EISSN: 1941-1162</identifier><identifier>DOI: 10.1016/j.jmst.2020.06.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Binary alloys ; Chemical environment ; Crystal structure ; Crystallography ; Demagnetization energy ; Density functional theory ; Electron spin state ; Entropy ; Exchange integral constants ; Exchange integrals ; Ferromagnetic and anti-ferromagnetic ; Ferromagnetic materials ; Ferromagnetism ; High entropy alloy ; High-entropy alloys ; Magnetic moment ; Magnetic moments ; Magnetic state ; Magnetic structure ; Magnetic transformation ; Magnetic transformations ; Manganese ; Saturation magnetization ; Silicon ; Spin dynamics ; Synergistic effect ; Transmission electron microscopy</subject><ispartof>Journal of materials science &amp; technology, 2021-03, Vol.68, p.124-131</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285253$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Duan, Yuping</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Ma, Guojia</creatorcontrib><creatorcontrib>Wang, Tongmin</creatorcontrib><creatorcontrib>Dong, Xinglong</creatorcontrib><creatorcontrib>Jia, Nan</creatorcontrib><title>Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys</title><title>Journal of materials science &amp; technology</title><description>We design high entropy alloys (HEAs) with different induction elements (Si/Al/Sn). In order to keep the crystal structure invariant and to investigate how the increment in saturation magnetization (Ms) is caused only by the change of electron spin state, each set of HEAs contains a different amount of Mn. Synergistic effects among induction elements that induce the magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism are found. Ms of added Mn reduces when a particular induction element (Si0.4/Al0.4/Sn0.4) exists, while a larger increment of Ms appears when two induction elements coexist, Si0.4Al0.4 (25.79 emu/g) and Sn0.4Al0.4 (15.43 emu/g). This is reflected in the microcosmic magnetic structure for the emergence of closed domains due to large demagnetization energy, which is confirmed by the Lorentz transmission electron microscope (LTEM) data. The calculated magnetic moments and the exchange integral constants from density functional theory based on the Exact Muffin-Tin Orbits formalism reveal that the magnetic state and the strength of ferromagnetic and anti-ferromagnetic coupling determine the variation of Ms in different chemical environments. The difference in energy levels of coexisting multiple induction elements also leads to a larger increment of Ms, Si0.4Al0.4Sn0.4 (29.78 emu/g), and Si0.4Al0.4Ge0.4Sn0.4 (31.00 emu/g).</description><subject>Binary alloys</subject><subject>Chemical environment</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Demagnetization energy</subject><subject>Density functional theory</subject><subject>Electron spin state</subject><subject>Entropy</subject><subject>Exchange integral constants</subject><subject>Exchange integrals</subject><subject>Ferromagnetic and anti-ferromagnetic</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>High entropy alloy</subject><subject>High-entropy alloys</subject><subject>Magnetic moment</subject><subject>Magnetic moments</subject><subject>Magnetic state</subject><subject>Magnetic structure</subject><subject>Magnetic transformation</subject><subject>Magnetic transformations</subject><subject>Manganese</subject><subject>Saturation magnetization</subject><subject>Silicon</subject><subject>Spin dynamics</subject><subject>Synergistic effect</subject><subject>Transmission electron microscopy</subject><issn>1005-0302</issn><issn>1941-1162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkD1v2zAURYUgAfL5BzK9MQEs9VEUJQVoBsOp3QJxMqTtkIUQpUebrkQaJJvWU_96ZThTpnfxcHBxcZLkmmHGkJWfNtlmCDHLMccMywwLPErO2F3BUsbK_HjMiCJFjvlpch7CBpFXoq7Pkn_LZmUpmhaib2zQzg9NNM6C07C0oL0boLHRpJr8mA9wGCA6-PAxFuY0c0_mdWn_ws0r3MOLmcC0n8CLncCCbmFtVmsgG73b7qDpe7cLl8mJbvpAV-_3Ivkx__J99jV9fF58m00fU2Il42mnSRU1YxVqVahSq7sWRcl1LpRCbHnF67oT1FYoCkF5WbVUKNUxrhhjvNL8IkkPveEPbX8rufVmaPxOusbIB_NzKp1fyV9xLfNa5IKP_OcDT-OoN0NehtaQbakzntooO2ckQ7mXLzdyL1_u5Uss5Sif_wefOXpg</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Zhang, Bin</creator><creator>Duan, Yuping</creator><creator>Zhang, Haifeng</creator><creator>Huang, Shuo</creator><creator>Ma, Guojia</creator><creator>Wang, Tongmin</creator><creator>Dong, Xinglong</creator><creator>Jia, Nan</creator><general>Elsevier Ltd</general><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20210330</creationdate><title>Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys</title><author>Zhang, Bin ; Duan, Yuping ; Zhang, Haifeng ; Huang, Shuo ; Ma, Guojia ; Wang, Tongmin ; Dong, Xinglong ; Jia, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1613-dfeb481170fb4b6fb9c0563f25bb00c37388d5ec70545e267ce4bbd13b11137f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary alloys</topic><topic>Chemical environment</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Demagnetization energy</topic><topic>Density functional theory</topic><topic>Electron spin state</topic><topic>Entropy</topic><topic>Exchange integral constants</topic><topic>Exchange integrals</topic><topic>Ferromagnetic and anti-ferromagnetic</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>High entropy alloy</topic><topic>High-entropy alloys</topic><topic>Magnetic moment</topic><topic>Magnetic moments</topic><topic>Magnetic state</topic><topic>Magnetic structure</topic><topic>Magnetic transformation</topic><topic>Magnetic transformations</topic><topic>Manganese</topic><topic>Saturation magnetization</topic><topic>Silicon</topic><topic>Spin dynamics</topic><topic>Synergistic effect</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Duan, Yuping</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Huang, Shuo</creatorcontrib><creatorcontrib>Ma, Guojia</creatorcontrib><creatorcontrib>Wang, Tongmin</creatorcontrib><creatorcontrib>Dong, Xinglong</creatorcontrib><creatorcontrib>Jia, Nan</creatorcontrib><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of materials science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Duan, Yuping</au><au>Zhang, Haifeng</au><au>Huang, Shuo</au><au>Ma, Guojia</au><au>Wang, Tongmin</au><au>Dong, Xinglong</au><au>Jia, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys</atitle><jtitle>Journal of materials science &amp; technology</jtitle><date>2021-03-30</date><risdate>2021</risdate><volume>68</volume><spage>124</spage><epage>131</epage><pages>124-131</pages><issn>1005-0302</issn><eissn>1941-1162</eissn><abstract>We design high entropy alloys (HEAs) with different induction elements (Si/Al/Sn). In order to keep the crystal structure invariant and to investigate how the increment in saturation magnetization (Ms) is caused only by the change of electron spin state, each set of HEAs contains a different amount of Mn. Synergistic effects among induction elements that induce the magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism are found. Ms of added Mn reduces when a particular induction element (Si0.4/Al0.4/Sn0.4) exists, while a larger increment of Ms appears when two induction elements coexist, Si0.4Al0.4 (25.79 emu/g) and Sn0.4Al0.4 (15.43 emu/g). This is reflected in the microcosmic magnetic structure for the emergence of closed domains due to large demagnetization energy, which is confirmed by the Lorentz transmission electron microscope (LTEM) data. The calculated magnetic moments and the exchange integral constants from density functional theory based on the Exact Muffin-Tin Orbits formalism reveal that the magnetic state and the strength of ferromagnetic and anti-ferromagnetic coupling determine the variation of Ms in different chemical environments. The difference in energy levels of coexisting multiple induction elements also leads to a larger increment of Ms, Si0.4Al0.4Sn0.4 (29.78 emu/g), and Si0.4Al0.4Ge0.4Sn0.4 (31.00 emu/g).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmst.2020.06.040</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-0302
ispartof Journal of materials science & technology, 2021-03, Vol.68, p.124-131
issn 1005-0302
1941-1162
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_285253
source ScienceDirect Journals
subjects Binary alloys
Chemical environment
Crystal structure
Crystallography
Demagnetization energy
Density functional theory
Electron spin state
Entropy
Exchange integral constants
Exchange integrals
Ferromagnetic and anti-ferromagnetic
Ferromagnetic materials
Ferromagnetism
High entropy alloy
High-entropy alloys
Magnetic moment
Magnetic moments
Magnetic state
Magnetic structure
Magnetic transformation
Magnetic transformations
Manganese
Saturation magnetization
Silicon
Spin dynamics
Synergistic effect
Transmission electron microscopy
title Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20transformation%20of%20Mn%20from%20anti-ferromagnetism%20to%20ferromagnetism%20in%20FeCoNiZMnx%20(Z%20=%20Si,%20Al,%20Sn,%20Ge)%20high%20entropy%20alloys&rft.jtitle=Journal%20of%20materials%20science%20&%20technology&rft.au=Zhang,%20Bin&rft.date=2021-03-30&rft.volume=68&rft.spage=124&rft.epage=131&rft.pages=124-131&rft.issn=1005-0302&rft.eissn=1941-1162&rft_id=info:doi/10.1016/j.jmst.2020.06.040&rft_dat=%3Celsevier_swepu%3ES1005030220306824%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1613-dfeb481170fb4b6fb9c0563f25bb00c37388d5ec70545e267ce4bbd13b11137f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true