Loading…
Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine
Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy...
Saved in:
Published in: | International journal of engine research 2021-12, Vol.22 (12), p.3447-3459 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53 |
container_end_page | 3459 |
container_issue | 12 |
container_start_page | 3447 |
container_title | International journal of engine research |
container_volume | 22 |
creator | Giramondi, Nicola Jäger, Anders Norling, Daniel Erlandsson, Anders Christiansen |
description | Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system. |
doi_str_mv | 10.1177/14680874211001260 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_293515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14680874211001260</sage_id><sourcerecordid>2605184337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53</originalsourceid><addsrcrecordid>eNp1kU1r4zAQhkXpwqbZ_QF7E_TsVl-24mPoNxR6afcqZHmUKHUkV5Jbct1fvnYT2kMpCAY0z_swzCD0h5IzSqU8p6JakIUUjFJCKKvIEZoxImjBqaiP0WzqFxPwE52ktCGElELKGfp35203gDeAg8V5Dbh1kKDDvetCxs5vwOQQsQneutUQdXbB4_FBXmsfurGxbYb0_qt9i3uINsStPgg1XoN-3RXtkHejOY6yg3MKgF85D7_QD6u7BL8PdY6erq8eL26L-4ebu4vlfWF4zXPB26amIGRTQc0qVgrNubVWkIY2EhrDpGGC8UpyWcva1sxorW1lLOOLlumSz1Gx96Y36IdG9dFtddypoJ26dH-XKsSVes5rxWpe0ok_3fN9DC8DpKw2YYh-HFGN-y3pQnAuR4ruKRNDShHsh5cSNZ1GfTnNmDk7TKJX8Gn9PvAfM-OQcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605184337</pqid></control><display><type>article</type><title>Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine</title><source>SAGE IMechE Complete Collection</source><source>Sage Journals Online</source><creator>Giramondi, Nicola ; Jäger, Anders ; Norling, Daniel ; Erlandsson, Anders Christiansen</creator><creatorcontrib>Giramondi, Nicola ; Jäger, Anders ; Norling, Daniel ; Erlandsson, Anders Christiansen</creatorcontrib><description>Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.</description><identifier>ISSN: 1468-0874</identifier><identifier>ISSN: 2041-3149</identifier><identifier>EISSN: 2041-3149</identifier><identifier>DOI: 10.1177/14680874211001260</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Combustion efficiency ; Configurations ; Emissions control ; Ethanol ; Fossil fuels ; Ignition ; Injectors ; Nozzles ; Optimization ; Performance evaluation ; Soot ; Spontaneous combustion</subject><ispartof>International journal of engine research, 2021-12, Vol.22 (12), p.3447-3459</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53</citedby><cites>FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53</cites><orcidid>0000-0002-7078-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14680874211001260$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14680874211001260$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21894,27903,27904,45038,45426,79110</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293515$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Giramondi, Nicola</creatorcontrib><creatorcontrib>Jäger, Anders</creatorcontrib><creatorcontrib>Norling, Daniel</creatorcontrib><creatorcontrib>Erlandsson, Anders Christiansen</creatorcontrib><title>Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine</title><title>International journal of engine research</title><description>Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.</description><subject>Combustion efficiency</subject><subject>Configurations</subject><subject>Emissions control</subject><subject>Ethanol</subject><subject>Fossil fuels</subject><subject>Ignition</subject><subject>Injectors</subject><subject>Nozzles</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Soot</subject><subject>Spontaneous combustion</subject><issn>1468-0874</issn><issn>2041-3149</issn><issn>2041-3149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kU1r4zAQhkXpwqbZ_QF7E_TsVl-24mPoNxR6afcqZHmUKHUkV5Jbct1fvnYT2kMpCAY0z_swzCD0h5IzSqU8p6JakIUUjFJCKKvIEZoxImjBqaiP0WzqFxPwE52ktCGElELKGfp35203gDeAg8V5Dbh1kKDDvetCxs5vwOQQsQneutUQdXbB4_FBXmsfurGxbYb0_qt9i3uINsStPgg1XoN-3RXtkHejOY6yg3MKgF85D7_QD6u7BL8PdY6erq8eL26L-4ebu4vlfWF4zXPB26amIGRTQc0qVgrNubVWkIY2EhrDpGGC8UpyWcva1sxorW1lLOOLlumSz1Gx96Y36IdG9dFtddypoJ26dH-XKsSVes5rxWpe0ok_3fN9DC8DpKw2YYh-HFGN-y3pQnAuR4ruKRNDShHsh5cSNZ1GfTnNmDk7TKJX8Gn9PvAfM-OQcA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Giramondi, Nicola</creator><creator>Jäger, Anders</creator><creator>Norling, Daniel</creator><creator>Erlandsson, Anders Christiansen</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-7078-2517</orcidid></search><sort><creationdate>20211201</creationdate><title>Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine</title><author>Giramondi, Nicola ; Jäger, Anders ; Norling, Daniel ; Erlandsson, Anders Christiansen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combustion efficiency</topic><topic>Configurations</topic><topic>Emissions control</topic><topic>Ethanol</topic><topic>Fossil fuels</topic><topic>Ignition</topic><topic>Injectors</topic><topic>Nozzles</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Soot</topic><topic>Spontaneous combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giramondi, Nicola</creatorcontrib><creatorcontrib>Jäger, Anders</creatorcontrib><creatorcontrib>Norling, Daniel</creatorcontrib><creatorcontrib>Erlandsson, Anders Christiansen</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>International journal of engine research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giramondi, Nicola</au><au>Jäger, Anders</au><au>Norling, Daniel</au><au>Erlandsson, Anders Christiansen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine</atitle><jtitle>International journal of engine research</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>3447</spage><epage>3459</epage><pages>3447-3459</pages><issn>1468-0874</issn><issn>2041-3149</issn><eissn>2041-3149</eissn><abstract>Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14680874211001260</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7078-2517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-0874 |
ispartof | International journal of engine research, 2021-12, Vol.22 (12), p.3447-3459 |
issn | 1468-0874 2041-3149 2041-3149 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_293515 |
source | SAGE IMechE Complete Collection; Sage Journals Online |
subjects | Combustion efficiency Configurations Emissions control Ethanol Fossil fuels Ignition Injectors Nozzles Optimization Performance evaluation Soot Spontaneous combustion |
title | Influence of the diesel pilot injector configuration on ethanol combustion and performance of a heavy-duty direct injection engine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20diesel%20pilot%20injector%20configuration%20on%20ethanol%20combustion%20and%20performance%20of%20a%20heavy-duty%20direct%20injection%20engine&rft.jtitle=International%20journal%20of%20engine%20research&rft.au=Giramondi,%20Nicola&rft.date=2021-12-01&rft.volume=22&rft.issue=12&rft.spage=3447&rft.epage=3459&rft.pages=3447-3459&rft.issn=1468-0874&rft.eissn=2041-3149&rft_id=info:doi/10.1177/14680874211001260&rft_dat=%3Cproquest_swepu%3E2605184337%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-3db91e47b6e926254a33fff40b1b7ebc27c24236737979f92caaaf6cf238d2a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605184337&rft_id=info:pmid/&rft_sage_id=10.1177_14680874211001260&rfr_iscdi=true |