Loading…

Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems

We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the σ-complex intermediates using density functio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2010-07, Vol.75 (14), p.4696-4705
Main Authors: Liljenberg, Magnus, Brinck, Tore, Herschend, Björn, Rein, Tobias, Rockwell, Glen, Svensson, Mats
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973
cites cdi_FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973
container_end_page 4705
container_issue 14
container_start_page 4696
container_title Journal of organic chemistry
container_volume 75
creator Liljenberg, Magnus
Brinck, Tore
Herschend, Björn
Rein, Tobias
Rockwell, Glen
Svensson, Mats
description We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the σ-complex intermediates using density functional theory. Predictions from this method can be used quantitatively for halogenations; it agreed to an accuracy of about 1 kcal/mol with experimental observations in 10 of the 11 investigated halogenation reactions. For nitrations, the method gave useful predictions for heterocyclic substrates. The method failed for nitration of monosubstituted benzenes, and we expect that more elaborate model systems, including explicit solvent molecules, will be necessary to obtain quantitatively useful predictions for such cases. For Lewis acid promoted Friedel−Crafts acylations, the method can be expected to give qualitatively correct predictions, that is, to point out the dominating isomer. For substrates where the regioisomeric outcome is highly dependent on the reaction conditions, the method can only be of qualitative use if the concentration of the free Lewis acid is high during the reaction. We have also compared the predictive capacity of the method to that of a modern reactivity index, the average local ionization energy, I(r). The latter method is found to predict the regisolectivity in halogenations and nitrations qualitatively correctly if the positions for the I(r) minima (I S,min) are not too sterically hindered but fails for qualitative predictions of F−C reactions. The downscaled I S,min values also perform well for the quantitative prediction of regioisomer distributions of halogenations. The accuracy is slightly lower than that for the new method.
doi_str_mv 10.1021/jo100310v
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_29508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733654021</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973</originalsourceid><addsrcrecordid>eNptkU1v1DAQhi0EotvCgT-AfEGoEgF_xIlzXC3lQyoCqdCrNXHsrosTp7YD6r_H7C7bC3MZaebRM9K8CL2g5C0ljL67DZQQTsmvR2hFBSNV05H6MVoRwljFWcNP0GlKt6SUEOIpOmGls07WKzRdg3cDZBcmHCwGvAnjvOTdADz-EgbjsQ0Rf4tmcDq76QbnrcFXLpvd_MIbnWOYt847ja-WPmWXl53PTXgdw1hcZXGfshnTM_TEgk_m-aGfoR8fLr5vPlWXXz9-3qwvK-CS5koPQEXP5cAayaFvNXSCgm6sHKzsmRUtp7UgXS0Nb4U1wLjuhKGtZFqzruVn6M3em36beenVHN0I8V4FcOq9u16rEG_Uz7xVrBNEFvz1Hp9juFtMymp0SRvvYTJhSarlvBF1eXUhz_ekjiGlaOxRTYn6G4Y6hlHYlwfr0o9mOJL_vl-AVwcAkgZvI0zapQeOE1bSZA8c6FT8SyzRpP8c_APC0p6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733654021</pqid></control><display><type>article</type><title>Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Liljenberg, Magnus ; Brinck, Tore ; Herschend, Björn ; Rein, Tobias ; Rockwell, Glen ; Svensson, Mats</creator><creatorcontrib>Liljenberg, Magnus ; Brinck, Tore ; Herschend, Björn ; Rein, Tobias ; Rockwell, Glen ; Svensson, Mats</creatorcontrib><description>We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the σ-complex intermediates using density functional theory. Predictions from this method can be used quantitatively for halogenations; it agreed to an accuracy of about 1 kcal/mol with experimental observations in 10 of the 11 investigated halogenation reactions. For nitrations, the method gave useful predictions for heterocyclic substrates. The method failed for nitration of monosubstituted benzenes, and we expect that more elaborate model systems, including explicit solvent molecules, will be necessary to obtain quantitatively useful predictions for such cases. For Lewis acid promoted Friedel−Crafts acylations, the method can be expected to give qualitatively correct predictions, that is, to point out the dominating isomer. For substrates where the regioisomeric outcome is highly dependent on the reaction conditions, the method can only be of qualitative use if the concentration of the free Lewis acid is high during the reaction. We have also compared the predictive capacity of the method to that of a modern reactivity index, the average local ionization energy, I(r). The latter method is found to predict the regisolectivity in halogenations and nitrations qualitatively correctly if the positions for the I(r) minima (I S,min) are not too sterically hindered but fails for qualitative predictions of F−C reactions. The downscaled I S,min values also perform well for the quantitative prediction of regioisomer distributions of halogenations. The accuracy is slightly lower than that for the new method.</description><identifier>ISSN: 0022-3263</identifier><identifier>ISSN: 1520-6904</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/jo100310v</identifier><identifier>PMID: 20552984</identifier><identifier>CODEN: JOCEAH</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>BENZENE ; Benzene - chemistry ; Chemistry ; Computer Simulation ; CONJUGATED MOLECULES ; Electron Transport ; Exact sciences and technology ; FRIEDEL-CRAFTS ACYLATION ; GROUND-STATES ; Ions - chemistry ; Kemi ; Kinetics ; Kinetics and mechanisms ; LOCAL IONIZATION ENERGIES ; MECHANISM ; Molecular Conformation ; NATURAL SCIENCES ; NATURVETENSKAP ; NITRATION ; NITROGEN-HETEROCYCLES ; Noncondensed benzenic compounds ; Organic chemistry ; Preparations and properties ; Quantum Theory ; RATE CONSTANTS ; Reactivity and mechanisms ; STABLE CARBOCATIONS ; Stereoisomerism</subject><ispartof>Journal of organic chemistry, 2010-07, Vol.75 (14), p.4696-4705</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973</citedby><cites>FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23025202$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20552984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-29508$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liljenberg, Magnus</creatorcontrib><creatorcontrib>Brinck, Tore</creatorcontrib><creatorcontrib>Herschend, Björn</creatorcontrib><creatorcontrib>Rein, Tobias</creatorcontrib><creatorcontrib>Rockwell, Glen</creatorcontrib><creatorcontrib>Svensson, Mats</creatorcontrib><title>Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the σ-complex intermediates using density functional theory. Predictions from this method can be used quantitatively for halogenations; it agreed to an accuracy of about 1 kcal/mol with experimental observations in 10 of the 11 investigated halogenation reactions. For nitrations, the method gave useful predictions for heterocyclic substrates. The method failed for nitration of monosubstituted benzenes, and we expect that more elaborate model systems, including explicit solvent molecules, will be necessary to obtain quantitatively useful predictions for such cases. For Lewis acid promoted Friedel−Crafts acylations, the method can be expected to give qualitatively correct predictions, that is, to point out the dominating isomer. For substrates where the regioisomeric outcome is highly dependent on the reaction conditions, the method can only be of qualitative use if the concentration of the free Lewis acid is high during the reaction. We have also compared the predictive capacity of the method to that of a modern reactivity index, the average local ionization energy, I(r). The latter method is found to predict the regisolectivity in halogenations and nitrations qualitatively correctly if the positions for the I(r) minima (I S,min) are not too sterically hindered but fails for qualitative predictions of F−C reactions. The downscaled I S,min values also perform well for the quantitative prediction of regioisomer distributions of halogenations. The accuracy is slightly lower than that for the new method.</description><subject>BENZENE</subject><subject>Benzene - chemistry</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>CONJUGATED MOLECULES</subject><subject>Electron Transport</subject><subject>Exact sciences and technology</subject><subject>FRIEDEL-CRAFTS ACYLATION</subject><subject>GROUND-STATES</subject><subject>Ions - chemistry</subject><subject>Kemi</subject><subject>Kinetics</subject><subject>Kinetics and mechanisms</subject><subject>LOCAL IONIZATION ENERGIES</subject><subject>MECHANISM</subject><subject>Molecular Conformation</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>NITRATION</subject><subject>NITROGEN-HETEROCYCLES</subject><subject>Noncondensed benzenic compounds</subject><subject>Organic chemistry</subject><subject>Preparations and properties</subject><subject>Quantum Theory</subject><subject>RATE CONSTANTS</subject><subject>Reactivity and mechanisms</subject><subject>STABLE CARBOCATIONS</subject><subject>Stereoisomerism</subject><issn>0022-3263</issn><issn>1520-6904</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkU1v1DAQhi0EotvCgT-AfEGoEgF_xIlzXC3lQyoCqdCrNXHsrosTp7YD6r_H7C7bC3MZaebRM9K8CL2g5C0ljL67DZQQTsmvR2hFBSNV05H6MVoRwljFWcNP0GlKt6SUEOIpOmGls07WKzRdg3cDZBcmHCwGvAnjvOTdADz-EgbjsQ0Rf4tmcDq76QbnrcFXLpvd_MIbnWOYt847ja-WPmWXl53PTXgdw1hcZXGfshnTM_TEgk_m-aGfoR8fLr5vPlWXXz9-3qwvK-CS5koPQEXP5cAayaFvNXSCgm6sHKzsmRUtp7UgXS0Nb4U1wLjuhKGtZFqzruVn6M3em36beenVHN0I8V4FcOq9u16rEG_Uz7xVrBNEFvz1Hp9juFtMymp0SRvvYTJhSarlvBF1eXUhz_ekjiGlaOxRTYn6G4Y6hlHYlwfr0o9mOJL_vl-AVwcAkgZvI0zapQeOE1bSZA8c6FT8SyzRpP8c_APC0p6I</recordid><startdate>20100716</startdate><enddate>20100716</enddate><creator>Liljenberg, Magnus</creator><creator>Brinck, Tore</creator><creator>Herschend, Björn</creator><creator>Rein, Tobias</creator><creator>Rockwell, Glen</creator><creator>Svensson, Mats</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20100716</creationdate><title>Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems</title><author>Liljenberg, Magnus ; Brinck, Tore ; Herschend, Björn ; Rein, Tobias ; Rockwell, Glen ; Svensson, Mats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BENZENE</topic><topic>Benzene - chemistry</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>CONJUGATED MOLECULES</topic><topic>Electron Transport</topic><topic>Exact sciences and technology</topic><topic>FRIEDEL-CRAFTS ACYLATION</topic><topic>GROUND-STATES</topic><topic>Ions - chemistry</topic><topic>Kemi</topic><topic>Kinetics</topic><topic>Kinetics and mechanisms</topic><topic>LOCAL IONIZATION ENERGIES</topic><topic>MECHANISM</topic><topic>Molecular Conformation</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>NITRATION</topic><topic>NITROGEN-HETEROCYCLES</topic><topic>Noncondensed benzenic compounds</topic><topic>Organic chemistry</topic><topic>Preparations and properties</topic><topic>Quantum Theory</topic><topic>RATE CONSTANTS</topic><topic>Reactivity and mechanisms</topic><topic>STABLE CARBOCATIONS</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liljenberg, Magnus</creatorcontrib><creatorcontrib>Brinck, Tore</creatorcontrib><creatorcontrib>Herschend, Björn</creatorcontrib><creatorcontrib>Rein, Tobias</creatorcontrib><creatorcontrib>Rockwell, Glen</creatorcontrib><creatorcontrib>Svensson, Mats</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liljenberg, Magnus</au><au>Brinck, Tore</au><au>Herschend, Björn</au><au>Rein, Tobias</au><au>Rockwell, Glen</au><au>Svensson, Mats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2010-07-16</date><risdate>2010</risdate><volume>75</volume><issue>14</issue><spage>4696</spage><epage>4705</epage><pages>4696-4705</pages><issn>0022-3263</issn><issn>1520-6904</issn><eissn>1520-6904</eissn><coden>JOCEAH</coden><abstract>We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the σ-complex intermediates using density functional theory. Predictions from this method can be used quantitatively for halogenations; it agreed to an accuracy of about 1 kcal/mol with experimental observations in 10 of the 11 investigated halogenation reactions. For nitrations, the method gave useful predictions for heterocyclic substrates. The method failed for nitration of monosubstituted benzenes, and we expect that more elaborate model systems, including explicit solvent molecules, will be necessary to obtain quantitatively useful predictions for such cases. For Lewis acid promoted Friedel−Crafts acylations, the method can be expected to give qualitatively correct predictions, that is, to point out the dominating isomer. For substrates where the regioisomeric outcome is highly dependent on the reaction conditions, the method can only be of qualitative use if the concentration of the free Lewis acid is high during the reaction. We have also compared the predictive capacity of the method to that of a modern reactivity index, the average local ionization energy, I(r). The latter method is found to predict the regisolectivity in halogenations and nitrations qualitatively correctly if the positions for the I(r) minima (I S,min) are not too sterically hindered but fails for qualitative predictions of F−C reactions. The downscaled I S,min values also perform well for the quantitative prediction of regioisomer distributions of halogenations. The accuracy is slightly lower than that for the new method.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20552984</pmid><doi>10.1021/jo100310v</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2010-07, Vol.75 (14), p.4696-4705
issn 0022-3263
1520-6904
1520-6904
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_29508
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects BENZENE
Benzene - chemistry
Chemistry
Computer Simulation
CONJUGATED MOLECULES
Electron Transport
Exact sciences and technology
FRIEDEL-CRAFTS ACYLATION
GROUND-STATES
Ions - chemistry
Kemi
Kinetics
Kinetics and mechanisms
LOCAL IONIZATION ENERGIES
MECHANISM
Molecular Conformation
NATURAL SCIENCES
NATURVETENSKAP
NITRATION
NITROGEN-HETEROCYCLES
Noncondensed benzenic compounds
Organic chemistry
Preparations and properties
Quantum Theory
RATE CONSTANTS
Reactivity and mechanisms
STABLE CARBOCATIONS
Stereoisomerism
title Validation of a Computational Model for Predicting the Site for Electrophilic Substitution in Aromatic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20a%20Computational%20Model%20for%20Predicting%20the%20Site%20for%20Electrophilic%20Substitution%20in%20Aromatic%20Systems&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Liljenberg,%20Magnus&rft.date=2010-07-16&rft.volume=75&rft.issue=14&rft.spage=4696&rft.epage=4705&rft.pages=4696-4705&rft.issn=0022-3263&rft.eissn=1520-6904&rft.coden=JOCEAH&rft_id=info:doi/10.1021/jo100310v&rft_dat=%3Cproquest_swepu%3E733654021%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-cda15b38d2683ab7ca951ac6f8df8b2f5731450948e375fea23c95e1782cc2973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733654021&rft_id=info:pmid/20552984&rfr_iscdi=true