Loading…

Solid-state polymer adsorption for surface modification: The role of molecular weight

[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2022-01, Vol.605, p.441-450
Main Authors: Xu, Wenyang, Mihhels, Karl, Kotov, Nikolay, Lepikko, Sakari, Ras, Robin H.A., Johnson, C. Magnus, Pettersson, Torbjörn, Kontturi, Eero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2021.07.062