Loading…

Solid-state polymer adsorption for surface modification: The role of molecular weight

[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2022-01, Vol.605, p.441-450
Main Authors: Xu, Wenyang, Mihhels, Karl, Kotov, Nikolay, Lepikko, Sakari, Ras, Robin H.A., Johnson, C. Magnus, Pettersson, Torbjörn, Kontturi, Eero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903
cites cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903
container_end_page 450
container_issue
container_start_page 441
container_title Journal of colloid and interface science
container_volume 605
creator Xu, Wenyang
Mihhels, Karl
Kotov, Nikolay
Lepikko, Sakari
Ras, Robin H.A.
Johnson, C. Magnus
Pettersson, Torbjörn
Kontturi, Eero
description [Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.
doi_str_mv 10.1016/j.jcis.2021.07.062
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_303890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721011322</els_id><sourcerecordid>2557538909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EEuXxBzj5yCXBm8RJjLhU5SlV4sDjajnOunVJ62AnVPx7Eoo4wmkP881oNUPIGbAYGOQXq3ilbYgTlkDMipjlyR6ZABM8KoCl-2TCBiUShSgOyVEIK8YAOBcT8vLkGltHoVMd0tY1n2v0VNXB-bazbkON8zT03iiNdO1qa6xWo3BJn5dIvWuQOjMoDeq-UZ5u0S6W3Qk5MKoJePpzj8nL7c3z7D6aP949zKbzSGdZ2UUZz41RnHGBTPMkKyvIU6gqXlQAiVCKA5QlZFznJsNUKBQlF6rEwZNVgqXHJNrlhi22fSVbb9fKf0qnrLy2r1Pp_EK-dUuZsrT85s93fOvde4-hk2sbNDaN2qDrg0zyNOcJDN38j3Je8DFUDGiyQ7V3IXg0v38Ak-M8ciXHeeQ4j2SFHOYZTFc7Ew79fFj0MmiLG4219ag7WTv7l_0LotyYdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557538909</pqid></control><display><type>article</type><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><source>ScienceDirect Journals</source><creator>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</creator><creatorcontrib>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</creatorcontrib><description>[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (&gt;500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.07.062</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; Contact angle ; Dewetting ; hydrophilicity ; hydrophobicity ; molecular weight ; Polymer adsorption ; Polystyrene ; polystyrenes ; silicon ; Silicon wafers ; solvents ; spectroscopy ; Surface modification ; thermodynamics</subject><ispartof>Journal of colloid and interface science, 2022-01, Vol.605, p.441-450</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</citedby><cites>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303890$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenyang</creatorcontrib><creatorcontrib>Mihhels, Karl</creatorcontrib><creatorcontrib>Kotov, Nikolay</creatorcontrib><creatorcontrib>Lepikko, Sakari</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Johnson, C. Magnus</creatorcontrib><creatorcontrib>Pettersson, Torbjörn</creatorcontrib><creatorcontrib>Kontturi, Eero</creatorcontrib><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><title>Journal of colloid and interface science</title><description>[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (&gt;500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</description><subject>adsorption</subject><subject>Contact angle</subject><subject>Dewetting</subject><subject>hydrophilicity</subject><subject>hydrophobicity</subject><subject>molecular weight</subject><subject>Polymer adsorption</subject><subject>Polystyrene</subject><subject>polystyrenes</subject><subject>silicon</subject><subject>Silicon wafers</subject><subject>solvents</subject><subject>spectroscopy</subject><subject>Surface modification</subject><subject>thermodynamics</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EEuXxBzj5yCXBm8RJjLhU5SlV4sDjajnOunVJ62AnVPx7Eoo4wmkP881oNUPIGbAYGOQXq3ilbYgTlkDMipjlyR6ZABM8KoCl-2TCBiUShSgOyVEIK8YAOBcT8vLkGltHoVMd0tY1n2v0VNXB-bazbkON8zT03iiNdO1qa6xWo3BJn5dIvWuQOjMoDeq-UZ5u0S6W3Qk5MKoJePpzj8nL7c3z7D6aP949zKbzSGdZ2UUZz41RnHGBTPMkKyvIU6gqXlQAiVCKA5QlZFznJsNUKBQlF6rEwZNVgqXHJNrlhi22fSVbb9fKf0qnrLy2r1Pp_EK-dUuZsrT85s93fOvde4-hk2sbNDaN2qDrg0zyNOcJDN38j3Je8DFUDGiyQ7V3IXg0v38Ak-M8ciXHeeQ4j2SFHOYZTFc7Ew79fFj0MmiLG4219ag7WTv7l_0LotyYdA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Xu, Wenyang</creator><creator>Mihhels, Karl</creator><creator>Kotov, Nikolay</creator><creator>Lepikko, Sakari</creator><creator>Ras, Robin H.A.</creator><creator>Johnson, C. Magnus</creator><creator>Pettersson, Torbjörn</creator><creator>Kontturi, Eero</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope></search><sort><creationdate>202201</creationdate><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><author>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adsorption</topic><topic>Contact angle</topic><topic>Dewetting</topic><topic>hydrophilicity</topic><topic>hydrophobicity</topic><topic>molecular weight</topic><topic>Polymer adsorption</topic><topic>Polystyrene</topic><topic>polystyrenes</topic><topic>silicon</topic><topic>Silicon wafers</topic><topic>solvents</topic><topic>spectroscopy</topic><topic>Surface modification</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenyang</creatorcontrib><creatorcontrib>Mihhels, Karl</creatorcontrib><creatorcontrib>Kotov, Nikolay</creatorcontrib><creatorcontrib>Lepikko, Sakari</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Johnson, C. Magnus</creatorcontrib><creatorcontrib>Pettersson, Torbjörn</creatorcontrib><creatorcontrib>Kontturi, Eero</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenyang</au><au>Mihhels, Karl</au><au>Kotov, Nikolay</au><au>Lepikko, Sakari</au><au>Ras, Robin H.A.</au><au>Johnson, C. Magnus</au><au>Pettersson, Torbjörn</au><au>Kontturi, Eero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state polymer adsorption for surface modification: The role of molecular weight</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-01</date><risdate>2022</risdate><volume>605</volume><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (&gt;500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2021.07.062</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-01, Vol.605, p.441-450
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_303890
source ScienceDirect Journals
subjects adsorption
Contact angle
Dewetting
hydrophilicity
hydrophobicity
molecular weight
Polymer adsorption
Polystyrene
polystyrenes
silicon
Silicon wafers
solvents
spectroscopy
Surface modification
thermodynamics
title Solid-state polymer adsorption for surface modification: The role of molecular weight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20polymer%20adsorption%20for%20surface%20modification:%20The%20role%20of%20molecular%20weight&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Wenyang&rft.date=2022-01&rft.volume=605&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.07.062&rft_dat=%3Cproquest_swepu%3E2557538909%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557538909&rft_id=info:pmid/&rfr_iscdi=true