Loading…
Solid-state polymer adsorption for surface modification: The role of molecular weight
[Display omitted] Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While t...
Saved in:
Published in: | Journal of colloid and interface science 2022-01, Vol.605, p.441-450 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903 |
container_end_page | 450 |
container_issue | |
container_start_page | 441 |
container_title | Journal of colloid and interface science |
container_volume | 605 |
creator | Xu, Wenyang Mihhels, Karl Kotov, Nikolay Lepikko, Sakari Ras, Robin H.A. Johnson, C. Magnus Pettersson, Torbjörn Kontturi, Eero |
description | [Display omitted]
Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers.
Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements.
Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers. |
doi_str_mv | 10.1016/j.jcis.2021.07.062 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_303890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721011322</els_id><sourcerecordid>2557538909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EEuXxBzj5yCXBm8RJjLhU5SlV4sDjajnOunVJ62AnVPx7Eoo4wmkP881oNUPIGbAYGOQXq3ilbYgTlkDMipjlyR6ZABM8KoCl-2TCBiUShSgOyVEIK8YAOBcT8vLkGltHoVMd0tY1n2v0VNXB-bazbkON8zT03iiNdO1qa6xWo3BJn5dIvWuQOjMoDeq-UZ5u0S6W3Qk5MKoJePpzj8nL7c3z7D6aP949zKbzSGdZ2UUZz41RnHGBTPMkKyvIU6gqXlQAiVCKA5QlZFznJsNUKBQlF6rEwZNVgqXHJNrlhi22fSVbb9fKf0qnrLy2r1Pp_EK-dUuZsrT85s93fOvde4-hk2sbNDaN2qDrg0zyNOcJDN38j3Je8DFUDGiyQ7V3IXg0v38Ak-M8ciXHeeQ4j2SFHOYZTFc7Ew79fFj0MmiLG4219ag7WTv7l_0LotyYdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557538909</pqid></control><display><type>article</type><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><source>ScienceDirect Journals</source><creator>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</creator><creatorcontrib>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</creatorcontrib><description>[Display omitted]
Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers.
Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements.
Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.07.062</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; Contact angle ; Dewetting ; hydrophilicity ; hydrophobicity ; molecular weight ; Polymer adsorption ; Polystyrene ; polystyrenes ; silicon ; Silicon wafers ; solvents ; spectroscopy ; Surface modification ; thermodynamics</subject><ispartof>Journal of colloid and interface science, 2022-01, Vol.605, p.441-450</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</citedby><cites>FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303890$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenyang</creatorcontrib><creatorcontrib>Mihhels, Karl</creatorcontrib><creatorcontrib>Kotov, Nikolay</creatorcontrib><creatorcontrib>Lepikko, Sakari</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Johnson, C. Magnus</creatorcontrib><creatorcontrib>Pettersson, Torbjörn</creatorcontrib><creatorcontrib>Kontturi, Eero</creatorcontrib><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><title>Journal of colloid and interface science</title><description>[Display omitted]
Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers.
Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements.
Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</description><subject>adsorption</subject><subject>Contact angle</subject><subject>Dewetting</subject><subject>hydrophilicity</subject><subject>hydrophobicity</subject><subject>molecular weight</subject><subject>Polymer adsorption</subject><subject>Polystyrene</subject><subject>polystyrenes</subject><subject>silicon</subject><subject>Silicon wafers</subject><subject>solvents</subject><subject>spectroscopy</subject><subject>Surface modification</subject><subject>thermodynamics</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EEuXxBzj5yCXBm8RJjLhU5SlV4sDjajnOunVJ62AnVPx7Eoo4wmkP881oNUPIGbAYGOQXq3ilbYgTlkDMipjlyR6ZABM8KoCl-2TCBiUShSgOyVEIK8YAOBcT8vLkGltHoVMd0tY1n2v0VNXB-bazbkON8zT03iiNdO1qa6xWo3BJn5dIvWuQOjMoDeq-UZ5u0S6W3Qk5MKoJePpzj8nL7c3z7D6aP949zKbzSGdZ2UUZz41RnHGBTPMkKyvIU6gqXlQAiVCKA5QlZFznJsNUKBQlF6rEwZNVgqXHJNrlhi22fSVbb9fKf0qnrLy2r1Pp_EK-dUuZsrT85s93fOvde4-hk2sbNDaN2qDrg0zyNOcJDN38j3Je8DFUDGiyQ7V3IXg0v38Ak-M8ciXHeeQ4j2SFHOYZTFc7Ew79fFj0MmiLG4219ag7WTv7l_0LotyYdA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Xu, Wenyang</creator><creator>Mihhels, Karl</creator><creator>Kotov, Nikolay</creator><creator>Lepikko, Sakari</creator><creator>Ras, Robin H.A.</creator><creator>Johnson, C. Magnus</creator><creator>Pettersson, Torbjörn</creator><creator>Kontturi, Eero</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope></search><sort><creationdate>202201</creationdate><title>Solid-state polymer adsorption for surface modification: The role of molecular weight</title><author>Xu, Wenyang ; Mihhels, Karl ; Kotov, Nikolay ; Lepikko, Sakari ; Ras, Robin H.A. ; Johnson, C. Magnus ; Pettersson, Torbjörn ; Kontturi, Eero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adsorption</topic><topic>Contact angle</topic><topic>Dewetting</topic><topic>hydrophilicity</topic><topic>hydrophobicity</topic><topic>molecular weight</topic><topic>Polymer adsorption</topic><topic>Polystyrene</topic><topic>polystyrenes</topic><topic>silicon</topic><topic>Silicon wafers</topic><topic>solvents</topic><topic>spectroscopy</topic><topic>Surface modification</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenyang</creatorcontrib><creatorcontrib>Mihhels, Karl</creatorcontrib><creatorcontrib>Kotov, Nikolay</creatorcontrib><creatorcontrib>Lepikko, Sakari</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Johnson, C. Magnus</creatorcontrib><creatorcontrib>Pettersson, Torbjörn</creatorcontrib><creatorcontrib>Kontturi, Eero</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenyang</au><au>Mihhels, Karl</au><au>Kotov, Nikolay</au><au>Lepikko, Sakari</au><au>Ras, Robin H.A.</au><au>Johnson, C. Magnus</au><au>Pettersson, Torbjörn</au><au>Kontturi, Eero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state polymer adsorption for surface modification: The role of molecular weight</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-01</date><risdate>2022</risdate><volume>605</volume><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers.
Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements.
Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2021.07.062</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2022-01, Vol.605, p.441-450 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_303890 |
source | ScienceDirect Journals |
subjects | adsorption Contact angle Dewetting hydrophilicity hydrophobicity molecular weight Polymer adsorption Polystyrene polystyrenes silicon Silicon wafers solvents spectroscopy Surface modification thermodynamics |
title | Solid-state polymer adsorption for surface modification: The role of molecular weight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20polymer%20adsorption%20for%20surface%20modification:%20The%20role%20of%20molecular%20weight&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Wenyang&rft.date=2022-01&rft.volume=605&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.07.062&rft_dat=%3Cproquest_swepu%3E2557538909%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-456ffa5059e0c5248b1631bb57b1129aa51188145c6f4e39ae9859a8ea504b903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557538909&rft_id=info:pmid/&rfr_iscdi=true |