Loading…

2D continuous Chebyshev-Galerkin time-spectral method

A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all dom...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications 2022-02, Vol.271, p.108217, Article 108217
Main Authors: Lindvall, Kristoffer, Scheffel, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843
cites cdi_FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843
container_end_page
container_issue
container_start_page 108217
container_title Computer physics communications
container_volume 271
creator Lindvall, Kristoffer
Scheffel, Jan
description A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.
doi_str_mv 10.1016/j.cpc.2021.108217
format article
fullrecord <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_304741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465521003295</els_id><sourcerecordid>S0010465521003295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRsFYfwLu8wNbZQ7IJXpVWq1DwRr1dNpuJ2R6yYTet9O1NiXgpDAwD_zfwf4TcM5gxYNnDZmY7O-PA2XDnnKkLMmG5KigvpLwkEwAGVGZpek1uYtwAgFKFmJCULxPr2961B3-IyaLB8hQbPNKV2WHYujbp3R5p7ND2weySPfaNr27JVW12Ee9-95R8PD-9L17o-m31upivqRUq7yk3QkGdCpVayTkzWSERyrKWVW6hAGlzxrFAIYRSFZbDZEKVqFBww8tciimh49_4jd2h1F1wexNO2hunl-5zrn340tu-0QKkkmzIszFvg48xYP1HMNBnT3qjB0_67EmPngbmcWRwKHJ0GHS0DluLlQtDaV159w_9A-fhb8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>2D continuous Chebyshev-Galerkin time-spectral method</title><source>ScienceDirect Journals</source><creator>Lindvall, Kristoffer ; Scheffel, Jan</creator><creatorcontrib>Lindvall, Kristoffer ; Scheffel, Jan</creatorcontrib><description>A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.</description><identifier>ISSN: 0010-4655</identifier><identifier>ISSN: 1879-2944</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2021.108217</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chebyshev ; GPU ; GWRM ; Matematik ; Mathematics ; ODE ; PDE ; Time-spectral</subject><ispartof>Computer physics communications, 2022-02, Vol.271, p.108217, Article 108217</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843</citedby><cites>FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843</cites><orcidid>0000-0003-0160-4060 ; 0000-0001-6379-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-304741$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindvall, Kristoffer</creatorcontrib><creatorcontrib>Scheffel, Jan</creatorcontrib><title>2D continuous Chebyshev-Galerkin time-spectral method</title><title>Computer physics communications</title><description>A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.</description><subject>Chebyshev</subject><subject>GPU</subject><subject>GWRM</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>ODE</subject><subject>PDE</subject><subject>Time-spectral</subject><issn>0010-4655</issn><issn>1879-2944</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKw0AQhhdRsFYfwLu8wNbZQ7IJXpVWq1DwRr1dNpuJ2R6yYTet9O1NiXgpDAwD_zfwf4TcM5gxYNnDZmY7O-PA2XDnnKkLMmG5KigvpLwkEwAGVGZpek1uYtwAgFKFmJCULxPr2961B3-IyaLB8hQbPNKV2WHYujbp3R5p7ND2weySPfaNr27JVW12Ee9-95R8PD-9L17o-m31upivqRUq7yk3QkGdCpVayTkzWSERyrKWVW6hAGlzxrFAIYRSFZbDZEKVqFBww8tciimh49_4jd2h1F1wexNO2hunl-5zrn340tu-0QKkkmzIszFvg48xYP1HMNBnT3qjB0_67EmPngbmcWRwKHJ0GHS0DluLlQtDaV159w_9A-fhb8k</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lindvall, Kristoffer</creator><creator>Scheffel, Jan</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0160-4060</orcidid><orcidid>https://orcid.org/0000-0001-6379-1880</orcidid></search><sort><creationdate>20220201</creationdate><title>2D continuous Chebyshev-Galerkin time-spectral method</title><author>Lindvall, Kristoffer ; Scheffel, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chebyshev</topic><topic>GPU</topic><topic>GWRM</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>ODE</topic><topic>PDE</topic><topic>Time-spectral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindvall, Kristoffer</creatorcontrib><creatorcontrib>Scheffel, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindvall, Kristoffer</au><au>Scheffel, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D continuous Chebyshev-Galerkin time-spectral method</atitle><jtitle>Computer physics communications</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>271</volume><spage>108217</spage><pages>108217-</pages><artnum>108217</artnum><issn>0010-4655</issn><issn>1879-2944</issn><eissn>1879-2944</eissn><abstract>A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2021.108217</doi><orcidid>https://orcid.org/0000-0003-0160-4060</orcidid><orcidid>https://orcid.org/0000-0001-6379-1880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2022-02, Vol.271, p.108217, Article 108217
issn 0010-4655
1879-2944
1879-2944
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_304741
source ScienceDirect Journals
subjects Chebyshev
GPU
GWRM
Matematik
Mathematics
ODE
PDE
Time-spectral
title 2D continuous Chebyshev-Galerkin time-spectral method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20continuous%20Chebyshev-Galerkin%20time-spectral%20method&rft.jtitle=Computer%20physics%20communications&rft.au=Lindvall,%20Kristoffer&rft.date=2022-02-01&rft.volume=271&rft.spage=108217&rft.pages=108217-&rft.artnum=108217&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2021.108217&rft_dat=%3Celsevier_swepu%3ES0010465521003295%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-2a370f5375c4221a694e0bbf4d8c0904c812e9e33377debdeb637be7e32a2b843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true