Loading…
A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information
•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented...
Saved in:
Published in: | Biomedical signal processing and control 2021-04, Vol.66, p.102444, Article 102444 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03 |
container_end_page | |
container_issue | |
container_start_page | 102444 |
container_title | Biomedical signal processing and control |
container_volume | 66 |
creator | Ovur, Salih Ertug Zhou, Xuanyi Qi, Wen Zhang, Longbin Hu, Yingbai Su, Hang Ferrigno, Giancarlo De Momi, Elena |
description | •A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework.
Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling. |
doi_str_mv | 10.1016/j.bspc.2021.102444 |
format | article |
fullrecord | <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_305489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809421000410</els_id><sourcerecordid>S1746809421000410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6z8Ayl24tSJxKYqpSAVsQG2lh-T1G1iR3ZSxN-TKMCS1Yyu7hlpThTdErwgmCzvDgsZWrVIcEKGIKGUnkUzwugyzgnOz393XNDL6CqEA8Y0Z4TOonqFrDtBjUTfOesa1wdUg_DW2AqVXjTw6fwRdQ6B3QurAIXNyzaWIoBGQ6BRBaHrPSAPylXWdMZZ1IcR19B2e2Rs6Xwjxvw6uihFHeDmZ86j98fN2_op3r1un9erXazSPOniMpcYylJrmqVpniVCQaZxIUWiqZKUFCzJGcPZUkkGmdJKaYwZwUKCYKXG6TyKp7vhE9pe8tabRvgv7oThD-ZjxZ2v-LHb8xRnNC-GfjL1lXcheCj_CIL56Jcf-OiXj3755HeA7icIhk9OBjwPysBgSJtBRce1M__h38wWhzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><source>ScienceDirect Freedom Collection</source><creator>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</creator><creatorcontrib>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</creatorcontrib><description>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework.
Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</description><identifier>ISSN: 1746-8094</identifier><identifier>ISSN: 1746-8108</identifier><identifier>EISSN: 1746-8108</identifier><identifier>DOI: 10.1016/j.bspc.2021.102444</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Augmented reality ; Augmented reality applications ; Autonomous learning ; Classification ; classifier ; Clustering ; Computer interaction ; Depth vision ; electromyography ; gesture ; Gesture recognition ; Hand-gesture recognition ; Hands gesture recognition ; human ; Human computer interaction ; Learning systems ; Machine learning ; Motion analysis techniques ; Multilayer neural networks ; Network layers ; Palmprint recognition ; Real time recognition ; Stable performance ; Surface electromyography ; vision</subject><ispartof>Biomedical signal processing and control, 2021-04, Vol.66, p.102444, Article 102444</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</citedby><cites>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305489$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovur, Salih Ertug</creatorcontrib><creatorcontrib>Zhou, Xuanyi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><title>Biomedical signal processing and control</title><description>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework.
Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</description><subject>Augmented reality</subject><subject>Augmented reality applications</subject><subject>Autonomous learning</subject><subject>Classification</subject><subject>classifier</subject><subject>Clustering</subject><subject>Computer interaction</subject><subject>Depth vision</subject><subject>electromyography</subject><subject>gesture</subject><subject>Gesture recognition</subject><subject>Hand-gesture recognition</subject><subject>Hands gesture recognition</subject><subject>human</subject><subject>Human computer interaction</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Motion analysis techniques</subject><subject>Multilayer neural networks</subject><subject>Network layers</subject><subject>Palmprint recognition</subject><subject>Real time recognition</subject><subject>Stable performance</subject><subject>Surface electromyography</subject><subject>vision</subject><issn>1746-8094</issn><issn>1746-8108</issn><issn>1746-8108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6z8Ayl24tSJxKYqpSAVsQG2lh-T1G1iR3ZSxN-TKMCS1Yyu7hlpThTdErwgmCzvDgsZWrVIcEKGIKGUnkUzwugyzgnOz393XNDL6CqEA8Y0Z4TOonqFrDtBjUTfOesa1wdUg_DW2AqVXjTw6fwRdQ6B3QurAIXNyzaWIoBGQ6BRBaHrPSAPylXWdMZZ1IcR19B2e2Rs6Xwjxvw6uihFHeDmZ86j98fN2_op3r1un9erXazSPOniMpcYylJrmqVpniVCQaZxIUWiqZKUFCzJGcPZUkkGmdJKaYwZwUKCYKXG6TyKp7vhE9pe8tabRvgv7oThD-ZjxZ2v-LHb8xRnNC-GfjL1lXcheCj_CIL56Jcf-OiXj3755HeA7icIhk9OBjwPysBgSJtBRce1M__h38wWhzQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ovur, Salih Ertug</creator><creator>Zhou, Xuanyi</creator><creator>Qi, Wen</creator><creator>Zhang, Longbin</creator><creator>Hu, Yingbai</creator><creator>Su, Hang</creator><creator>Ferrigno, Giancarlo</creator><creator>De Momi, Elena</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20210401</creationdate><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><author>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmented reality</topic><topic>Augmented reality applications</topic><topic>Autonomous learning</topic><topic>Classification</topic><topic>classifier</topic><topic>Clustering</topic><topic>Computer interaction</topic><topic>Depth vision</topic><topic>electromyography</topic><topic>gesture</topic><topic>Gesture recognition</topic><topic>Hand-gesture recognition</topic><topic>Hands gesture recognition</topic><topic>human</topic><topic>Human computer interaction</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Motion analysis techniques</topic><topic>Multilayer neural networks</topic><topic>Network layers</topic><topic>Palmprint recognition</topic><topic>Real time recognition</topic><topic>Stable performance</topic><topic>Surface electromyography</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovur, Salih Ertug</creatorcontrib><creatorcontrib>Zhou, Xuanyi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovur, Salih Ertug</au><au>Zhou, Xuanyi</au><au>Qi, Wen</au><au>Zhang, Longbin</au><au>Hu, Yingbai</au><au>Su, Hang</au><au>Ferrigno, Giancarlo</au><au>De Momi, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</atitle><jtitle>Biomedical signal processing and control</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>66</volume><spage>102444</spage><pages>102444-</pages><artnum>102444</artnum><issn>1746-8094</issn><issn>1746-8108</issn><eissn>1746-8108</eissn><abstract>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework.
Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.bspc.2021.102444</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1746-8094 |
ispartof | Biomedical signal processing and control, 2021-04, Vol.66, p.102444, Article 102444 |
issn | 1746-8094 1746-8108 1746-8108 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_305489 |
source | ScienceDirect Freedom Collection |
subjects | Augmented reality Augmented reality applications Autonomous learning Classification classifier Clustering Computer interaction Depth vision electromyography gesture Gesture recognition Hand-gesture recognition Hands gesture recognition human Human computer interaction Learning systems Machine learning Motion analysis techniques Multilayer neural networks Network layers Palmprint recognition Real time recognition Stable performance Surface electromyography vision |
title | A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20autonomous%20learning%20framework%20to%20enhance%20sEMG-based%20hand%20gesture%20recognition%20using%20depth%20information&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=Ovur,%20Salih%20Ertug&rft.date=2021-04-01&rft.volume=66&rft.spage=102444&rft.pages=102444-&rft.artnum=102444&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2021.102444&rft_dat=%3Celsevier_swepu%3ES1746809421000410%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |