Loading…

A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information

•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control 2021-04, Vol.66, p.102444, Article 102444
Main Authors: Ovur, Salih Ertug, Zhou, Xuanyi, Qi, Wen, Zhang, Longbin, Hu, Yingbai, Su, Hang, Ferrigno, Giancarlo, De Momi, Elena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03
cites cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03
container_end_page
container_issue
container_start_page 102444
container_title Biomedical signal processing and control
container_volume 66
creator Ovur, Salih Ertug
Zhou, Xuanyi
Qi, Wen
Zhang, Longbin
Hu, Yingbai
Su, Hang
Ferrigno, Giancarlo
De Momi, Elena
description •A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework. Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.
doi_str_mv 10.1016/j.bspc.2021.102444
format article
fullrecord <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_305489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809421000410</els_id><sourcerecordid>S1746809421000410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6z8Ayl24tSJxKYqpSAVsQG2lh-T1G1iR3ZSxN-TKMCS1Yyu7hlpThTdErwgmCzvDgsZWrVIcEKGIKGUnkUzwugyzgnOz393XNDL6CqEA8Y0Z4TOonqFrDtBjUTfOesa1wdUg_DW2AqVXjTw6fwRdQ6B3QurAIXNyzaWIoBGQ6BRBaHrPSAPylXWdMZZ1IcR19B2e2Rs6Xwjxvw6uihFHeDmZ86j98fN2_op3r1un9erXazSPOniMpcYylJrmqVpniVCQaZxIUWiqZKUFCzJGcPZUkkGmdJKaYwZwUKCYKXG6TyKp7vhE9pe8tabRvgv7oThD-ZjxZ2v-LHb8xRnNC-GfjL1lXcheCj_CIL56Jcf-OiXj3755HeA7icIhk9OBjwPysBgSJtBRce1M__h38wWhzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><source>ScienceDirect Freedom Collection</source><creator>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</creator><creatorcontrib>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</creatorcontrib><description>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework. Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</description><identifier>ISSN: 1746-8094</identifier><identifier>ISSN: 1746-8108</identifier><identifier>EISSN: 1746-8108</identifier><identifier>DOI: 10.1016/j.bspc.2021.102444</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Augmented reality ; Augmented reality applications ; Autonomous learning ; Classification ; classifier ; Clustering ; Computer interaction ; Depth vision ; electromyography ; gesture ; Gesture recognition ; Hand-gesture recognition ; Hands gesture recognition ; human ; Human computer interaction ; Learning systems ; Machine learning ; Motion analysis techniques ; Multilayer neural networks ; Network layers ; Palmprint recognition ; Real time recognition ; Stable performance ; Surface electromyography ; vision</subject><ispartof>Biomedical signal processing and control, 2021-04, Vol.66, p.102444, Article 102444</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</citedby><cites>FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305489$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovur, Salih Ertug</creatorcontrib><creatorcontrib>Zhou, Xuanyi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><title>Biomedical signal processing and control</title><description>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework. Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</description><subject>Augmented reality</subject><subject>Augmented reality applications</subject><subject>Autonomous learning</subject><subject>Classification</subject><subject>classifier</subject><subject>Clustering</subject><subject>Computer interaction</subject><subject>Depth vision</subject><subject>electromyography</subject><subject>gesture</subject><subject>Gesture recognition</subject><subject>Hand-gesture recognition</subject><subject>Hands gesture recognition</subject><subject>human</subject><subject>Human computer interaction</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Motion analysis techniques</subject><subject>Multilayer neural networks</subject><subject>Network layers</subject><subject>Palmprint recognition</subject><subject>Real time recognition</subject><subject>Stable performance</subject><subject>Surface electromyography</subject><subject>vision</subject><issn>1746-8094</issn><issn>1746-8108</issn><issn>1746-8108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6z8Ayl24tSJxKYqpSAVsQG2lh-T1G1iR3ZSxN-TKMCS1Yyu7hlpThTdErwgmCzvDgsZWrVIcEKGIKGUnkUzwugyzgnOz393XNDL6CqEA8Y0Z4TOonqFrDtBjUTfOesa1wdUg_DW2AqVXjTw6fwRdQ6B3QurAIXNyzaWIoBGQ6BRBaHrPSAPylXWdMZZ1IcR19B2e2Rs6Xwjxvw6uihFHeDmZ86j98fN2_op3r1un9erXazSPOniMpcYylJrmqVpniVCQaZxIUWiqZKUFCzJGcPZUkkGmdJKaYwZwUKCYKXG6TyKp7vhE9pe8tabRvgv7oThD-ZjxZ2v-LHb8xRnNC-GfjL1lXcheCj_CIL56Jcf-OiXj3755HeA7icIhk9OBjwPysBgSJtBRce1M__h38wWhzQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ovur, Salih Ertug</creator><creator>Zhou, Xuanyi</creator><creator>Qi, Wen</creator><creator>Zhang, Longbin</creator><creator>Hu, Yingbai</creator><creator>Su, Hang</creator><creator>Ferrigno, Giancarlo</creator><creator>De Momi, Elena</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20210401</creationdate><title>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</title><author>Ovur, Salih Ertug ; Zhou, Xuanyi ; Qi, Wen ; Zhang, Longbin ; Hu, Yingbai ; Su, Hang ; Ferrigno, Giancarlo ; De Momi, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmented reality</topic><topic>Augmented reality applications</topic><topic>Autonomous learning</topic><topic>Classification</topic><topic>classifier</topic><topic>Clustering</topic><topic>Computer interaction</topic><topic>Depth vision</topic><topic>electromyography</topic><topic>gesture</topic><topic>Gesture recognition</topic><topic>Hand-gesture recognition</topic><topic>Hands gesture recognition</topic><topic>human</topic><topic>Human computer interaction</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Motion analysis techniques</topic><topic>Multilayer neural networks</topic><topic>Network layers</topic><topic>Palmprint recognition</topic><topic>Real time recognition</topic><topic>Stable performance</topic><topic>Surface electromyography</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovur, Salih Ertug</creatorcontrib><creatorcontrib>Zhou, Xuanyi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovur, Salih Ertug</au><au>Zhou, Xuanyi</au><au>Qi, Wen</au><au>Zhang, Longbin</au><au>Hu, Yingbai</au><au>Su, Hang</au><au>Ferrigno, Giancarlo</au><au>De Momi, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information</atitle><jtitle>Biomedical signal processing and control</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>66</volume><spage>102444</spage><pages>102444-</pages><artnum>102444</artnum><issn>1746-8094</issn><issn>1746-8108</issn><eissn>1746-8108</eissn><abstract>•A novel autonomous learning framework is presented to integrate the benefits of both depth vision and EMG signals.•Combination of depth information and sEMG with HSOM and MNN adopted to achieve better accuracy for the designed VR application.•A hand gesture recognition demonstration is implemented to verify the effectiveness of the proposed framework. Hand gesture recognition using surface electromyography (sEMG) has been one of the most efficient motion analysis techniques in human–computer interaction in the last few decades. In particular, multichannel sEMG techniques have achieved stable performance in hand gesture recognition. However, the general solution of collecting and labeling large data manually leads to time-consuming implementation. A novel learning method is therefore needed to facilitate efficient data collection and preprocessing. In this paper, a novel autonomous learning framework is proposed to integrate the benefits of both depth vision and EMG signals, which automatically label the class of collected EMG data using depth information. It then utilizes a multiple layer neural network (MNN) classifier to achieve real-time recognition of the hand gestures using only the sEMG. The overall framework is demonstrated in an augmented reality application by the recognition of 10 hand gestures using the Myo armband and an HTC VIVE PRO. The results show prominent performance by introducing depth information for real-time data labeling.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.bspc.2021.102444</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-8094
ispartof Biomedical signal processing and control, 2021-04, Vol.66, p.102444, Article 102444
issn 1746-8094
1746-8108
1746-8108
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_305489
source ScienceDirect Freedom Collection
subjects Augmented reality
Augmented reality applications
Autonomous learning
Classification
classifier
Clustering
Computer interaction
Depth vision
electromyography
gesture
Gesture recognition
Hand-gesture recognition
Hands gesture recognition
human
Human computer interaction
Learning systems
Machine learning
Motion analysis techniques
Multilayer neural networks
Network layers
Palmprint recognition
Real time recognition
Stable performance
Surface electromyography
vision
title A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20autonomous%20learning%20framework%20to%20enhance%20sEMG-based%20hand%20gesture%20recognition%20using%20depth%20information&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=Ovur,%20Salih%20Ertug&rft.date=2021-04-01&rft.volume=66&rft.spage=102444&rft.pages=102444-&rft.artnum=102444&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2021.102444&rft_dat=%3Celsevier_swepu%3ES1746809421000410%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-f8b0effdd4533852ace5d09ba2d4cb41972877056cb7e5cdccd00710abea7fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true