Loading…

In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films

The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-01, Vol.32 (4), p.2107667-n/a
Main Authors: Cao, Wei, Yin, Shanshan, Bitsch, Martin, Liang, Suzhe, Plank, Martina, Opel, Matthias, Scheel, Manuel A., Gallei, Markus, Janka, Oliver, Schwartzkopf, Matthias, Roth, Stephan V., Müller‐Buschbaum, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233
cites cdi_FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233
container_end_page n/a
container_issue 4
container_start_page 2107667
container_title Advanced functional materials
container_volume 32
creator Cao, Wei
Yin, Shanshan
Bitsch, Martin
Liang, Suzhe
Plank, Martina
Opel, Matthias
Scheel, Manuel A.
Gallei, Markus
Janka, Oliver
Schwartzkopf, Matthias
Roth, Stephan V.
Müller‐Buschbaum, Peter
description The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene‐block‐poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing‐incidence small‐angle X‐ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field‐dependent magnetization and temperature‐dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors. The influence of FePt nanoparticles (NPs) on the film formation of hybrid diblock copolymer films is investigated with in situ grazing‐incidence small‐angle X‐ray scattering during printing. The two characteristic morphology development processes, domain shrinkage, and duration of a metastable state are altered by the FePt NPs, resulting in a different final film morphology compared with a pure diblock copolymer film.
doi_str_mv 10.1002/adfm.202107667
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_312066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621006199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233</originalsourceid><addsrcrecordid>eNqFkc1OwzAQhCMEElC4crbEOcU_1G6OVUtpJQpIBcTNcuNNMU3iYCdUOcEj8Iw8Ca6KypHL7h6-GY12ouiM4C7BmF4onRVdiinBgnOxFx0RTnjMMO3v727yfBgde_-KMRGCXR5FH9MSzU3doHnd6BbZDI3hvka3qrSVcrVJc_Dfn1_TUjcpaDSzrnqxuV22aATvkNuqgLJGunGmXKL7MOvNEWxmallC0KNJu3BGo5FZ5DZdoaGtbN4W4NDY5IU_iQ4ylXs4_d2d6HF89TCcxDd319Ph4CZOWdITMVcCX_ZEBn3OGBeahvgZoVQA8B7WRFMmMsoXKhGpEJAmSuMeJX3aB6oFZawTxVtfv4aqWcjKmUK5Vlpl5Mg8DaR1S7mqXyQjFHMe-PMtXzn71oCv5attXBkiSsrDizEnSRKo7pZKnfXeQbbzJVhuSpGbUuSulCBItoK1yaH9h5aD0Xj2p_0BUm2SQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621006199</pqid></control><display><type>article</type><title>In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cao, Wei ; Yin, Shanshan ; Bitsch, Martin ; Liang, Suzhe ; Plank, Martina ; Opel, Matthias ; Scheel, Manuel A. ; Gallei, Markus ; Janka, Oliver ; Schwartzkopf, Matthias ; Roth, Stephan V. ; Müller‐Buschbaum, Peter</creator><creatorcontrib>Cao, Wei ; Yin, Shanshan ; Bitsch, Martin ; Liang, Suzhe ; Plank, Martina ; Opel, Matthias ; Scheel, Manuel A. ; Gallei, Markus ; Janka, Oliver ; Schwartzkopf, Matthias ; Roth, Stephan V. ; Müller‐Buschbaum, Peter</creatorcontrib><description>The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene‐block‐poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing‐incidence small‐angle X‐ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field‐dependent magnetization and temperature‐dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors. The influence of FePt nanoparticles (NPs) on the film formation of hybrid diblock copolymer films is investigated with in situ grazing‐incidence small‐angle X‐ray scattering during printing. The two characteristic morphology development processes, domain shrinkage, and duration of a metastable state are altered by the FePt NPs, resulting in a different final film morphology compared with a pure diblock copolymer film.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202107667</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binary alloys ; Block copolymers ; Diblock co-polymer films ; Diblock-copolymer ; Esters ; FePt nanoparticles ; Film formations ; Functional materials ; Grazing incidence small-angle X-ray scattering ; Hybrid film ; Hybrid materials ; In situ grazing-incidence small-angle X-ray scattering ; Intermetallic compounds ; Iron alloys ; Iron compounds ; magnetic nanoparticles ; Magnetic properties ; Materials science ; Metastable state ; Morphology ; Nanomagnetics ; Nanoparticles ; Platinum alloys ; Platinum compounds ; Polymethyl methacrylate ; Polystyrene resins ; Printing ; Solvents ; Superparamagnetic behavior ; Temperature dependence ; Ultra-high-molecular-weight ; Ultrahigh molecular weight ; ultrahigh molecular weight, diblock copolymers ; X ray scattering</subject><ispartof>Advanced functional materials, 2022-01, Vol.32 (4), p.2107667-n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233</citedby><cites>FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233</cites><orcidid>0000-0002-9566-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-312066$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Yin, Shanshan</creatorcontrib><creatorcontrib>Bitsch, Martin</creatorcontrib><creatorcontrib>Liang, Suzhe</creatorcontrib><creatorcontrib>Plank, Martina</creatorcontrib><creatorcontrib>Opel, Matthias</creatorcontrib><creatorcontrib>Scheel, Manuel A.</creatorcontrib><creatorcontrib>Gallei, Markus</creatorcontrib><creatorcontrib>Janka, Oliver</creatorcontrib><creatorcontrib>Schwartzkopf, Matthias</creatorcontrib><creatorcontrib>Roth, Stephan V.</creatorcontrib><creatorcontrib>Müller‐Buschbaum, Peter</creatorcontrib><title>In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films</title><title>Advanced functional materials</title><description>The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene‐block‐poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing‐incidence small‐angle X‐ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field‐dependent magnetization and temperature‐dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors. The influence of FePt nanoparticles (NPs) on the film formation of hybrid diblock copolymer films is investigated with in situ grazing‐incidence small‐angle X‐ray scattering during printing. The two characteristic morphology development processes, domain shrinkage, and duration of a metastable state are altered by the FePt NPs, resulting in a different final film morphology compared with a pure diblock copolymer film.</description><subject>Binary alloys</subject><subject>Block copolymers</subject><subject>Diblock co-polymer films</subject><subject>Diblock-copolymer</subject><subject>Esters</subject><subject>FePt nanoparticles</subject><subject>Film formations</subject><subject>Functional materials</subject><subject>Grazing incidence small-angle X-ray scattering</subject><subject>Hybrid film</subject><subject>Hybrid materials</subject><subject>In situ grazing-incidence small-angle X-ray scattering</subject><subject>Intermetallic compounds</subject><subject>Iron alloys</subject><subject>Iron compounds</subject><subject>magnetic nanoparticles</subject><subject>Magnetic properties</subject><subject>Materials science</subject><subject>Metastable state</subject><subject>Morphology</subject><subject>Nanomagnetics</subject><subject>Nanoparticles</subject><subject>Platinum alloys</subject><subject>Platinum compounds</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Printing</subject><subject>Solvents</subject><subject>Superparamagnetic behavior</subject><subject>Temperature dependence</subject><subject>Ultra-high-molecular-weight</subject><subject>Ultrahigh molecular weight</subject><subject>ultrahigh molecular weight, diblock copolymers</subject><subject>X ray scattering</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1OwzAQhCMEElC4crbEOcU_1G6OVUtpJQpIBcTNcuNNMU3iYCdUOcEj8Iw8Ca6KypHL7h6-GY12ouiM4C7BmF4onRVdiinBgnOxFx0RTnjMMO3v727yfBgde_-KMRGCXR5FH9MSzU3doHnd6BbZDI3hvka3qrSVcrVJc_Dfn1_TUjcpaDSzrnqxuV22aATvkNuqgLJGunGmXKL7MOvNEWxmallC0KNJu3BGo5FZ5DZdoaGtbN4W4NDY5IU_iQ4ylXs4_d2d6HF89TCcxDd319Ph4CZOWdITMVcCX_ZEBn3OGBeahvgZoVQA8B7WRFMmMsoXKhGpEJAmSuMeJX3aB6oFZawTxVtfv4aqWcjKmUK5Vlpl5Mg8DaR1S7mqXyQjFHMe-PMtXzn71oCv5attXBkiSsrDizEnSRKo7pZKnfXeQbbzJVhuSpGbUuSulCBItoK1yaH9h5aD0Xj2p_0BUm2SQw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cao, Wei</creator><creator>Yin, Shanshan</creator><creator>Bitsch, Martin</creator><creator>Liang, Suzhe</creator><creator>Plank, Martina</creator><creator>Opel, Matthias</creator><creator>Scheel, Manuel A.</creator><creator>Gallei, Markus</creator><creator>Janka, Oliver</creator><creator>Schwartzkopf, Matthias</creator><creator>Roth, Stephan V.</creator><creator>Müller‐Buschbaum, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid></search><sort><creationdate>20220101</creationdate><title>In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films</title><author>Cao, Wei ; Yin, Shanshan ; Bitsch, Martin ; Liang, Suzhe ; Plank, Martina ; Opel, Matthias ; Scheel, Manuel A. ; Gallei, Markus ; Janka, Oliver ; Schwartzkopf, Matthias ; Roth, Stephan V. ; Müller‐Buschbaum, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary alloys</topic><topic>Block copolymers</topic><topic>Diblock co-polymer films</topic><topic>Diblock-copolymer</topic><topic>Esters</topic><topic>FePt nanoparticles</topic><topic>Film formations</topic><topic>Functional materials</topic><topic>Grazing incidence small-angle X-ray scattering</topic><topic>Hybrid film</topic><topic>Hybrid materials</topic><topic>In situ grazing-incidence small-angle X-ray scattering</topic><topic>Intermetallic compounds</topic><topic>Iron alloys</topic><topic>Iron compounds</topic><topic>magnetic nanoparticles</topic><topic>Magnetic properties</topic><topic>Materials science</topic><topic>Metastable state</topic><topic>Morphology</topic><topic>Nanomagnetics</topic><topic>Nanoparticles</topic><topic>Platinum alloys</topic><topic>Platinum compounds</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Printing</topic><topic>Solvents</topic><topic>Superparamagnetic behavior</topic><topic>Temperature dependence</topic><topic>Ultra-high-molecular-weight</topic><topic>Ultrahigh molecular weight</topic><topic>ultrahigh molecular weight, diblock copolymers</topic><topic>X ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Yin, Shanshan</creatorcontrib><creatorcontrib>Bitsch, Martin</creatorcontrib><creatorcontrib>Liang, Suzhe</creatorcontrib><creatorcontrib>Plank, Martina</creatorcontrib><creatorcontrib>Opel, Matthias</creatorcontrib><creatorcontrib>Scheel, Manuel A.</creatorcontrib><creatorcontrib>Gallei, Markus</creatorcontrib><creatorcontrib>Janka, Oliver</creatorcontrib><creatorcontrib>Schwartzkopf, Matthias</creatorcontrib><creatorcontrib>Roth, Stephan V.</creatorcontrib><creatorcontrib>Müller‐Buschbaum, Peter</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wei</au><au>Yin, Shanshan</au><au>Bitsch, Martin</au><au>Liang, Suzhe</au><au>Plank, Martina</au><au>Opel, Matthias</au><au>Scheel, Manuel A.</au><au>Gallei, Markus</au><au>Janka, Oliver</au><au>Schwartzkopf, Matthias</au><au>Roth, Stephan V.</au><au>Müller‐Buschbaum, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films</atitle><jtitle>Advanced functional materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>2107667</spage><epage>n/a</epage><pages>2107667-n/a</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>The development of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles (NPs) by printing is a highly promising method for scalable and low‐cost fabrication. During printing, the drying and arrangement kinetics of the DBC and magnetic NPs play an important role in the film formation concerning morphology and magnetic properties. In this study, the morphology evolution of ultrahigh molecular weight DBC polystyrene‐block‐poly(methyl methacrylate) and magnetic iron platinum (FePt) NPs is investigated with grazing‐incidence small‐angle X‐ray scattering (GISAXS) in situ during printing. For comparison, a pure DBC film is printed without FePt NPs under the same conditions. The GISAXS data suggest that the addition of NPs accelerates the solvent evaporation, leading to a faster film formation of the hybrid film compared to the pure film. As the solvent is almost evaporated, a metastable state is observed in both films. Compared with the pure film, such a metastable state continues longer during the printing process of the hybrid film because of the presence of FePt NPs, which inhibits the reorganization of the DBC chains. Moreover, investigations of the field‐dependent magnetization and temperature‐dependent susceptibility indicate that the printed hybrid film is superparamagnetic, which makes this film class promising for magnetic sensors. The influence of FePt nanoparticles (NPs) on the film formation of hybrid diblock copolymer films is investigated with in situ grazing‐incidence small‐angle X‐ray scattering during printing. The two characteristic morphology development processes, domain shrinkage, and duration of a metastable state are altered by the FePt NPs, resulting in a different final film morphology compared with a pure diblock copolymer film.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202107667</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9566-6088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-01, Vol.32 (4), p.2107667-n/a
issn 1616-301X
1616-3028
1616-3028
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_312066
source Wiley-Blackwell Read & Publish Collection
subjects Binary alloys
Block copolymers
Diblock co-polymer films
Diblock-copolymer
Esters
FePt nanoparticles
Film formations
Functional materials
Grazing incidence small-angle X-ray scattering
Hybrid film
Hybrid materials
In situ grazing-incidence small-angle X-ray scattering
Intermetallic compounds
Iron alloys
Iron compounds
magnetic nanoparticles
Magnetic properties
Materials science
Metastable state
Morphology
Nanomagnetics
Nanoparticles
Platinum alloys
Platinum compounds
Polymethyl methacrylate
Polystyrene resins
Printing
Solvents
Superparamagnetic behavior
Temperature dependence
Ultra-high-molecular-weight
Ultrahigh molecular weight
ultrahigh molecular weight, diblock copolymers
X ray scattering
title In Situ Study of FePt Nanoparticles‐Induced Morphology Development during Printing of Magnetic Hybrid Diblock Copolymer Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Study%20of%20FePt%20Nanoparticles%E2%80%90Induced%20Morphology%20Development%20during%20Printing%20of%20Magnetic%20Hybrid%20Diblock%20Copolymer%20Films&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20Wei&rft.date=2022-01-01&rft.volume=32&rft.issue=4&rft.spage=2107667&rft.epage=n/a&rft.pages=2107667-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202107667&rft_dat=%3Cproquest_swepu%3E2621006199%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3957-6a70457fe863367d2177f1227ee650d1d237f26ba97c77ec9ad0521828e2d7233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621006199&rft_id=info:pmid/&rfr_iscdi=true