Loading…
Delineation of aquifers favorable for groundwater development using Schlumberger configuration resistivity survey techniques in Rajouri district of Jammu and Kashmir, India
The primary goal of this research is to demarcate aquifers favorable for groundwater development in the border district of Rajouri, in the Union Territory of Jammu, and Kashmir, in order to secure a long-term water supply. The Schlumberger configuration resistivity survey technique Vertical Electric...
Saved in:
Published in: | Groundwater for sustainable development 2022-05, Vol.17, p.100764, Article 100764 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The primary goal of this research is to demarcate aquifers favorable for groundwater development in the border district of Rajouri, in the Union Territory of Jammu, and Kashmir, in order to secure a long-term water supply. The Schlumberger configuration resistivity survey technique Vertical Electrical Sounding (VES) is used to investigate the characteristics of the subsurface layer and the potential of groundwater by using 30 VES sites in order to establish the optimum sites for digging a successful borehole for the qualitative and quantitative interpretations in the study area. It is determined that real resistivity values of subsurface geoelectric layers less than 35 Ohm m indicate the existence of finer sediments, whilst moderate resistivity values ranging from 35 to 100 Ohm m suggest the presence of coarser sediments favorable for groundwater development. The resistivity value between 100 and 200 Ohm m indicates weathered formation, 200–400 Ohm m, indicates fractured rock and more than 400 Ohm m represents hard formation which is devoid of any kind of groundwater development. The bedrock resistivity, nature of the curve, and overburden thickness are the parameters utilized to choose a good site for drilling tests. Based on the criteria, it was determined that nine VES sites (VES-2, VES-3, VES-4, VES-6, VES-17, VES-18, VES-19, VES-28, and VES-30) are appropriate for the installation of a tube well for irrigation and domestic purposes. The 8 sites (VES-14, VES-15, VES-20, VES-21, VES-22, VES-23, VES-24, and VES-27) were not suitable because of compact formation and harder rocks whereas the 13 VES sites (VES- 1, VES-5, VES-7, VES-8, VES-9, VES-10, VES-11, VES-12, VES-13, VES-16, VES-25, VES-26, VES-29) are partially suitable for groundwater development and only suitable for personal uses such as hand pump of shallow depth.
[Display omitted]
•To investigate the characteristics of the subsurface layer and the potential of groundwater.•To establish the optimum sites for digging a successful borehole and the qualitative and quantitative interpretations.•To demarcate groundwater-bearing zones using VES.•A cost effective mechanism in identifying geological and hydrogeological subsurface conditions. |
---|---|
ISSN: | 2352-801X 2352-801X |
DOI: | 10.1016/j.gsd.2022.100764 |