Loading…
Spatiotemporal heterogeneity of entanglement in many-body localized systems
We propose a spatiotemporal characterization of the entanglement dynamics in many-body localized (MBL) systems, which exhibits a striking resemblance to dynamical heterogeneity in classical glasses. Specifically, we find that the relaxation times of local entanglement, as measured by the concurrence...
Saved in:
Published in: | Physical review. B 2022-05, Vol.105 (18), Article 184202 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a spatiotemporal characterization of the entanglement dynamics in many-body localized (MBL) systems, which exhibits a striking resemblance to dynamical heterogeneity in classical glasses. Specifically, we find that the relaxation times of local entanglement, as measured by the concurrence, are spatially correlated yielding a dynamical length scale for quantum entanglement. As a consequence of this spatiotemporal analysis, we observe that the considered MBL system is made up of dynamically correlated clusters with a size set by this entanglement length scale. The system decomposes into compartments of different activity such as active regions with fast quantum entanglement dynamics and inactive regions where the dynamics is slow. We further find that the relaxation times of the on-site concurrence become broadly distributed and more spatially correlated, as disorder increases or the energy of the initial state decreases. Through this spatiotemporal characterization of entanglement, our work unravels a previously unrecognized connection between the behavior of classical glasses and the genuine quantum dynamics of MBL systems. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.105.184202 |