Loading…

Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators

Nanoconstriction spin-Hall nano-oscillators (NC-SHNOs) are excellent devices for a wide variety of applications, from RF communication to bio-inspired computing. NC-SHNOs are easy to fabricate in large arrays, are CMOS compatible, and feature a narrow linewidth and high output power. However, in ord...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2023-05, Vol.13 (5), p.055103-055103-9
Main Authors: Capriata, Corrado Carlo Maria, Malm, Bengt Gunnar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c426t-906b92562603e2aaee1519d069ee23aa6d610425684ee0309f2b48ce27b8d78a3
container_end_page 055103-9
container_issue 5
container_start_page 055103
container_title AIP advances
container_volume 13
creator Capriata, Corrado Carlo Maria
Malm, Bengt Gunnar
description Nanoconstriction spin-Hall nano-oscillators (NC-SHNOs) are excellent devices for a wide variety of applications, from RF communication to bio-inspired computing. NC-SHNOs are easy to fabricate in large arrays, are CMOS compatible, and feature a narrow linewidth and high output power. However, in order to take full advantage of the device capabilities, a systematic analysis of the array behavior with respect to the number and dimensions of oscillators, the temperature of operation, and the influence of layer quality is needed. Here, we focus on micromagnetic simulations of 2 × 2 and 4 × 4 NC-SHNO arrays with single oscillators separated by up to 300 nm. We observe a synchronization scheme that allows for column-wise selection of the oscillation frequency for a larger pitch. However, for smaller pitches, a coherent oscillation volume was observed, and this volume included both the constrictions and extended beyond that region. A local variation in the exchange coupling in the active oscillator region was investigated by placing physical grains in the free magnetic layer, and it was shown to influence both the stable current range and the resulting frequency and output power. De-coupling the oscillators along rows or columns could provide higher power due to more favorable phase shifts between oscillators. Our investigation helps in achieving a deeper understanding of the intrinsic working principles of NC-SHNO arrays and how they reach fully synchronized states, and this will help to expand non-conventional computing capabilities.
doi_str_mv 10.1063/5.0147668
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_329372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ba88b60727b4f8cbffca3e7d8a2b916</doaj_id><sourcerecordid>2808412947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-906b92562603e2aaee1519d069ee23aa6d610425684ee0309f2b48ce27b8d78a3</originalsourceid><addsrcrecordid>eNp9kV1LHTEQhpeiUFEv_AcLvWphNV-bTS7F-gWCN-ptmM3O1pyuyTbJVvTXN_UcrEUwNxOGZx6Gd6rqgJJDSiQ_ag8JFZ2U6lO1w2irGs6Y3Hrz_1ztp7Qi5QlNiRI71c15BOfrlONi8xKxdn6cFvQW61DaT97ex-DdMw51fgzN4B7QJxc8THWanW8uYJpqDz40IVk3TZBDTHvV9ghTwv1N3a1uz05vTi6aq-vzy5Pjq8YKJnOjiew1ayWThCMDQKQt1QORGpFxADlISkQBlEAknOiR9UJZZF2vhk4B360u194hwMrM0T1AfDIBnHlphPjDQMzOTmi6HpTqJenKsBiV7cfRAsduUMB6TWVxNWtXesR56f-zfXd3xy-2n_necKZ5xwr_Zc3PMfxaMGWzCkssuSTDVImWMi26Qn1dUzaGlCKOr15KzN-bmdZsblbYb5sNrMuQS8iv8O8Q_4FmHsaP4PfmP80UpQ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808412947</pqid></control><display><type>article</type><title>Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Capriata, Corrado Carlo Maria ; Malm, Bengt Gunnar</creator><creatorcontrib>Capriata, Corrado Carlo Maria ; Malm, Bengt Gunnar</creatorcontrib><description>Nanoconstriction spin-Hall nano-oscillators (NC-SHNOs) are excellent devices for a wide variety of applications, from RF communication to bio-inspired computing. NC-SHNOs are easy to fabricate in large arrays, are CMOS compatible, and feature a narrow linewidth and high output power. However, in order to take full advantage of the device capabilities, a systematic analysis of the array behavior with respect to the number and dimensions of oscillators, the temperature of operation, and the influence of layer quality is needed. Here, we focus on micromagnetic simulations of 2 × 2 and 4 × 4 NC-SHNO arrays with single oscillators separated by up to 300 nm. We observe a synchronization scheme that allows for column-wise selection of the oscillation frequency for a larger pitch. However, for smaller pitches, a coherent oscillation volume was observed, and this volume included both the constrictions and extended beyond that region. A local variation in the exchange coupling in the active oscillator region was investigated by placing physical grains in the free magnetic layer, and it was shown to influence both the stable current range and the resulting frequency and output power. De-coupling the oscillators along rows or columns could provide higher power due to more favorable phase shifts between oscillators. Our investigation helps in achieving a deeper understanding of the intrinsic working principles of NC-SHNO arrays and how they reach fully synchronized states, and this will help to expand non-conventional computing capabilities.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0147668</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Arrays ; Computation ; Coupling ; Grain structure ; Oscillators ; Radio frequency ; Synchronism</subject><ispartof>AIP advances, 2023-05, Vol.13 (5), p.055103-055103-9</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-906b92562603e2aaee1519d069ee23aa6d610425684ee0309f2b48ce27b8d78a3</cites><orcidid>0000-0002-7484-9694 ; 0000-0001-6459-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0147668$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27890,27924,27925,76408</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-329372$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Capriata, Corrado Carlo Maria</creatorcontrib><creatorcontrib>Malm, Bengt Gunnar</creatorcontrib><title>Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators</title><title>AIP advances</title><description>Nanoconstriction spin-Hall nano-oscillators (NC-SHNOs) are excellent devices for a wide variety of applications, from RF communication to bio-inspired computing. NC-SHNOs are easy to fabricate in large arrays, are CMOS compatible, and feature a narrow linewidth and high output power. However, in order to take full advantage of the device capabilities, a systematic analysis of the array behavior with respect to the number and dimensions of oscillators, the temperature of operation, and the influence of layer quality is needed. Here, we focus on micromagnetic simulations of 2 × 2 and 4 × 4 NC-SHNO arrays with single oscillators separated by up to 300 nm. We observe a synchronization scheme that allows for column-wise selection of the oscillation frequency for a larger pitch. However, for smaller pitches, a coherent oscillation volume was observed, and this volume included both the constrictions and extended beyond that region. A local variation in the exchange coupling in the active oscillator region was investigated by placing physical grains in the free magnetic layer, and it was shown to influence both the stable current range and the resulting frequency and output power. De-coupling the oscillators along rows or columns could provide higher power due to more favorable phase shifts between oscillators. Our investigation helps in achieving a deeper understanding of the intrinsic working principles of NC-SHNO arrays and how they reach fully synchronized states, and this will help to expand non-conventional computing capabilities.</description><subject>Arrays</subject><subject>Computation</subject><subject>Coupling</subject><subject>Grain structure</subject><subject>Oscillators</subject><subject>Radio frequency</subject><subject>Synchronism</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1LHTEQhpeiUFEv_AcLvWphNV-bTS7F-gWCN-ptmM3O1pyuyTbJVvTXN_UcrEUwNxOGZx6Gd6rqgJJDSiQ_ag8JFZ2U6lO1w2irGs6Y3Hrz_1ztp7Qi5QlNiRI71c15BOfrlONi8xKxdn6cFvQW61DaT97ex-DdMw51fgzN4B7QJxc8THWanW8uYJpqDz40IVk3TZBDTHvV9ghTwv1N3a1uz05vTi6aq-vzy5Pjq8YKJnOjiew1ayWThCMDQKQt1QORGpFxADlISkQBlEAknOiR9UJZZF2vhk4B360u194hwMrM0T1AfDIBnHlphPjDQMzOTmi6HpTqJenKsBiV7cfRAsduUMB6TWVxNWtXesR56f-zfXd3xy-2n_necKZ5xwr_Zc3PMfxaMGWzCkssuSTDVImWMi26Qn1dUzaGlCKOr15KzN-bmdZsblbYb5sNrMuQS8iv8O8Q_4FmHsaP4PfmP80UpQ4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Capriata, Corrado Carlo Maria</creator><creator>Malm, Bengt Gunnar</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7484-9694</orcidid><orcidid>https://orcid.org/0000-0001-6459-749X</orcidid></search><sort><creationdate>20230501</creationdate><title>Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators</title><author>Capriata, Corrado Carlo Maria ; Malm, Bengt Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-906b92562603e2aaee1519d069ee23aa6d610425684ee0309f2b48ce27b8d78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Computation</topic><topic>Coupling</topic><topic>Grain structure</topic><topic>Oscillators</topic><topic>Radio frequency</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capriata, Corrado Carlo Maria</creatorcontrib><creatorcontrib>Malm, Bengt Gunnar</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capriata, Corrado Carlo Maria</au><au>Malm, Bengt Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators</atitle><jtitle>AIP advances</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>055103</spage><epage>055103-9</epage><pages>055103-055103-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Nanoconstriction spin-Hall nano-oscillators (NC-SHNOs) are excellent devices for a wide variety of applications, from RF communication to bio-inspired computing. NC-SHNOs are easy to fabricate in large arrays, are CMOS compatible, and feature a narrow linewidth and high output power. However, in order to take full advantage of the device capabilities, a systematic analysis of the array behavior with respect to the number and dimensions of oscillators, the temperature of operation, and the influence of layer quality is needed. Here, we focus on micromagnetic simulations of 2 × 2 and 4 × 4 NC-SHNO arrays with single oscillators separated by up to 300 nm. We observe a synchronization scheme that allows for column-wise selection of the oscillation frequency for a larger pitch. However, for smaller pitches, a coherent oscillation volume was observed, and this volume included both the constrictions and extended beyond that region. A local variation in the exchange coupling in the active oscillator region was investigated by placing physical grains in the free magnetic layer, and it was shown to influence both the stable current range and the resulting frequency and output power. De-coupling the oscillators along rows or columns could provide higher power due to more favorable phase shifts between oscillators. Our investigation helps in achieving a deeper understanding of the intrinsic working principles of NC-SHNO arrays and how they reach fully synchronized states, and this will help to expand non-conventional computing capabilities.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147668</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7484-9694</orcidid><orcidid>https://orcid.org/0000-0001-6459-749X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-05, Vol.13 (5), p.055103-055103-9
issn 2158-3226
2158-3226
language eng
recordid cdi_swepub_primary_oai_DiVA_org_kth_329372
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Arrays
Computation
Coupling
Grain structure
Oscillators
Radio frequency
Synchronism
title Grain structure influence on synchronized two-dimensional spin-Hall nano-oscillators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20structure%20influence%20on%20synchronized%20two-dimensional%20spin-Hall%20nano-oscillators&rft.jtitle=AIP%20advances&rft.au=Capriata,%20Corrado%20Carlo%20Maria&rft.date=2023-05-01&rft.volume=13&rft.issue=5&rft.spage=055103&rft.epage=055103-9&rft.pages=055103-055103-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0147668&rft_dat=%3Cproquest_swepu%3E2808412947%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-906b92562603e2aaee1519d069ee23aa6d610425684ee0309f2b48ce27b8d78a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808412947&rft_id=info:pmid/&rfr_iscdi=true