Loading…
Distribution of tension wood like gelatinous fibres in the roots of Acacia nilotica (Lam.) Willd
KEY MESSAGE : The present study unravels the anatomical characteristics and distribution patterns of cell wall polymers in the G-fibres found in the roots of A. nilotica using different microscopy techniques (light, electron and immunofluorescence microscopy). The present study was aimed to investig...
Saved in:
Published in: | Planta 2014-12, Vol.240 (6), p.1191-1202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | KEY MESSAGE : The present study unravels the anatomical characteristics and distribution patterns of cell wall polymers in the G-fibres found in the roots of A. nilotica using different microscopy techniques (light, electron and immunofluorescence microscopy). The present study was aimed to investigate the anatomy of reaction xylem in the positively gravitropic roots of Acacia nilotica growing in compact and waterlogged soils. The roots collected from the two different sites showed occurrence of gelatinous fibres throughout xylem radii from a distance of 4 cm from the soil surface. The thickness of gelatinous layer (G-layer) increased in the root collected from the deeper soil. Further, the ultrastructural studies revealed a complete replacement of S₂ and S₃ layers in G-fibres nearer to root tip region as compared to the root portion close to upper part of the soil surface. In addition, these fibres demonstrated intense lignification in compound middle lamellae region of G-fibre walls. Moreover, the vessel density and their width increased considerably near the root tip region. The immunofluorescence analysis suggested that the β-1,4-galactans were prevalent in G-layer, whereas the xylan was restricted to only regions of lignified secondary wall. The similarities in distribution pattern and anatomical features of G-fibres in waterlogged and non-waterlogged roots suggest the occurrence of G-fibres as inherent characteristics in the roots of Acacia nilotica. |
---|---|
ISSN: | 0032-0935 1432-2048 1432-2048 |
DOI: | 10.1007/s00425-014-2141-z |