Loading…
Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics
This paper demonstrates a linear aeroacoustic simulation methodology to predict the whistling of an orifice plate in a flow duct. The methodology is based on a linearized Navier–Stokes solver in the frequency domain with the mean flow field taken from a Reynolds-Averaged Navier–Stokes (RANS) solutio...
Saved in:
Published in: | Journal of sound and vibration 2012-02, Vol.331 (5), p.1084-1096 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333 |
container_end_page | 1096 |
container_issue | 5 |
container_start_page | 1084 |
container_title | Journal of sound and vibration |
container_volume | 331 |
creator | Kierkegaard, A. Allam, S. Efraimsson, G. Åbom, M. |
description | This paper demonstrates a linear aeroacoustic simulation methodology to predict the whistling of an orifice plate in a flow duct. The methodology is based on a linearized Navier–Stokes solver in the frequency domain with the mean flow field taken from a Reynolds-Averaged Navier–Stokes (RANS) solution. The whistling potentiality is investigated via an acoustic energy balance for the in-duct element and good agreement with experimental data is shown. A Nyquist stability criterion based on the simulation data was applied to predict whistling of the orifice when placed in a finite sized duct and experiments were carried out to validate the predictions. The results indicate that although whistling is a nonlinear phenomena caused by an acoustic-flow instability feed-back loop, the linearized Navier–Stokes equations can be used to predict both whistling potentiality and a duct system's ability to whistle or not.
► An aeroacoustic simulations methodology based on the frequency domain Navier–Stokes equations are presented. ► A Nyquist stability criterion was applied to identify whistling in duct systems. ► Simulation results are validated by experiments, with good agreement. ► Results suggest that linear aeroacoustic simulations can be used to predict whistling in duct systems. |
doi_str_mv | 10.1016/j.jsv.2011.10.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_kth_33779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X11008327</els_id><sourcerecordid>1762128318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIUYml5QdwywWJA1nGseM44lS1QCtV6oEPcbMcZ7I7S9ZebKdV_z2Otqo40ZPl0TPjkd-ieMtgzYDJj7v1Lt6ta2As39dQqxfFikHXVKqR6mWxAqjrSkj49ap4HeMOADrBxarYfKP9PJlE3sXSj-X9lmKayG1K44YybfGfysEndInMROlhscaV5Kphtqn0gUayGVPalhmjCaXB4I31c0xk41lxMpop4pvH87T48eXz94ur6ub26_XF-U1lBYdUDT3jxmIPnYGxw2HsOi4M44L142ilaJVpBR96QNX0LQ5tNzQMrWwZk13DOT8tPhznxns8zL0-BNqb8KC9IX1JP8-1Dxv9O201523bZf7-yA_B_5kxJr2naHGajMO8uWatrFmtOFPPU2Cg2oaDyJQdqQ0-xoDj0xoMFif1Tue49BLXUspx5Z53j-NNtGYag3GW4lNj3UgApRb36egw_-IdYdDREjqLAwW0SQ-e_vPKX_qKrEk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010875304</pqid></control><display><type>article</type><title>Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics</title><source>ScienceDirect Freedom Collection</source><creator>Kierkegaard, A. ; Allam, S. ; Efraimsson, G. ; Åbom, M.</creator><creatorcontrib>Kierkegaard, A. ; Allam, S. ; Efraimsson, G. ; Åbom, M.</creatorcontrib><description>This paper demonstrates a linear aeroacoustic simulation methodology to predict the whistling of an orifice plate in a flow duct. The methodology is based on a linearized Navier–Stokes solver in the frequency domain with the mean flow field taken from a Reynolds-Averaged Navier–Stokes (RANS) solution. The whistling potentiality is investigated via an acoustic energy balance for the in-duct element and good agreement with experimental data is shown. A Nyquist stability criterion based on the simulation data was applied to predict whistling of the orifice when placed in a finite sized duct and experiments were carried out to validate the predictions. The results indicate that although whistling is a nonlinear phenomena caused by an acoustic-flow instability feed-back loop, the linearized Navier–Stokes equations can be used to predict both whistling potentiality and a duct system's ability to whistle or not.
► An aeroacoustic simulations methodology based on the frequency domain Navier–Stokes equations are presented. ► A Nyquist stability criterion was applied to identify whistling in duct systems. ► Simulation results are validated by experiments, with good agreement. ► Results suggest that linear aeroacoustic simulations can be used to predict whistling in duct systems.</description><identifier>ISSN: 0022-460X</identifier><identifier>ISSN: 1095-8568</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2011.10.028</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustics ; Aeroacoustics ; Aeroacoustics, atmospheric sound ; Akustik ; duct ; Ducts ; Engineering physics ; Exact sciences and technology ; Fluid dynamics ; frequency-domain ; Fundamental areas of phenomenology (including applications) ; General theory ; linearized Navier-Stokes ; Mathematical analysis ; Methodology ; Navier-Stokes equations ; Physics ; scattering ; Simulation ; Stability ; TECHNOLOGY ; TEKNIKVETENSKAP ; Teknisk fysik</subject><ispartof>Journal of sound and vibration, 2012-02, Vol.331 (5), p.1084-1096</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333</citedby><cites>FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25600888$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33779$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kierkegaard, A.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Efraimsson, G.</creatorcontrib><creatorcontrib>Åbom, M.</creatorcontrib><title>Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics</title><title>Journal of sound and vibration</title><description>This paper demonstrates a linear aeroacoustic simulation methodology to predict the whistling of an orifice plate in a flow duct. The methodology is based on a linearized Navier–Stokes solver in the frequency domain with the mean flow field taken from a Reynolds-Averaged Navier–Stokes (RANS) solution. The whistling potentiality is investigated via an acoustic energy balance for the in-duct element and good agreement with experimental data is shown. A Nyquist stability criterion based on the simulation data was applied to predict whistling of the orifice when placed in a finite sized duct and experiments were carried out to validate the predictions. The results indicate that although whistling is a nonlinear phenomena caused by an acoustic-flow instability feed-back loop, the linearized Navier–Stokes equations can be used to predict both whistling potentiality and a duct system's ability to whistle or not.
► An aeroacoustic simulations methodology based on the frequency domain Navier–Stokes equations are presented. ► A Nyquist stability criterion was applied to identify whistling in duct systems. ► Simulation results are validated by experiments, with good agreement. ► Results suggest that linear aeroacoustic simulations can be used to predict whistling in duct systems.</description><subject>Acoustics</subject><subject>Aeroacoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Akustik</subject><subject>duct</subject><subject>Ducts</subject><subject>Engineering physics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>frequency-domain</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>linearized Navier-Stokes</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>scattering</subject><subject>Simulation</subject><subject>Stability</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Teknisk fysik</subject><issn>0022-460X</issn><issn>1095-8568</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBuAIUYml5QdwywWJA1nGseM44lS1QCtV6oEPcbMcZ7I7S9ZebKdV_z2Otqo40ZPl0TPjkd-ieMtgzYDJj7v1Lt6ta2As39dQqxfFikHXVKqR6mWxAqjrSkj49ap4HeMOADrBxarYfKP9PJlE3sXSj-X9lmKayG1K44YybfGfysEndInMROlhscaV5Kphtqn0gUayGVPalhmjCaXB4I31c0xk41lxMpop4pvH87T48eXz94ur6ub26_XF-U1lBYdUDT3jxmIPnYGxw2HsOi4M44L142ilaJVpBR96QNX0LQ5tNzQMrWwZk13DOT8tPhznxns8zL0-BNqb8KC9IX1JP8-1Dxv9O201523bZf7-yA_B_5kxJr2naHGajMO8uWatrFmtOFPPU2Cg2oaDyJQdqQ0-xoDj0xoMFif1Tue49BLXUspx5Z53j-NNtGYag3GW4lNj3UgApRb36egw_-IdYdDREjqLAwW0SQ-e_vPKX_qKrEk</recordid><startdate>20120227</startdate><enddate>20120227</enddate><creator>Kierkegaard, A.</creator><creator>Allam, S.</creator><creator>Efraimsson, G.</creator><creator>Åbom, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20120227</creationdate><title>Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics</title><author>Kierkegaard, A. ; Allam, S. ; Efraimsson, G. ; Åbom, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Aeroacoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Akustik</topic><topic>duct</topic><topic>Ducts</topic><topic>Engineering physics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>frequency-domain</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>linearized Navier-Stokes</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>scattering</topic><topic>Simulation</topic><topic>Stability</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Teknisk fysik</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kierkegaard, A.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Efraimsson, G.</creatorcontrib><creatorcontrib>Åbom, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kierkegaard, A.</au><au>Allam, S.</au><au>Efraimsson, G.</au><au>Åbom, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics</atitle><jtitle>Journal of sound and vibration</jtitle><date>2012-02-27</date><risdate>2012</risdate><volume>331</volume><issue>5</issue><spage>1084</spage><epage>1096</epage><pages>1084-1096</pages><issn>0022-460X</issn><issn>1095-8568</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This paper demonstrates a linear aeroacoustic simulation methodology to predict the whistling of an orifice plate in a flow duct. The methodology is based on a linearized Navier–Stokes solver in the frequency domain with the mean flow field taken from a Reynolds-Averaged Navier–Stokes (RANS) solution. The whistling potentiality is investigated via an acoustic energy balance for the in-duct element and good agreement with experimental data is shown. A Nyquist stability criterion based on the simulation data was applied to predict whistling of the orifice when placed in a finite sized duct and experiments were carried out to validate the predictions. The results indicate that although whistling is a nonlinear phenomena caused by an acoustic-flow instability feed-back loop, the linearized Navier–Stokes equations can be used to predict both whistling potentiality and a duct system's ability to whistle or not.
► An aeroacoustic simulations methodology based on the frequency domain Navier–Stokes equations are presented. ► A Nyquist stability criterion was applied to identify whistling in duct systems. ► Simulation results are validated by experiments, with good agreement. ► Results suggest that linear aeroacoustic simulations can be used to predict whistling in duct systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2011.10.028</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2012-02, Vol.331 (5), p.1084-1096 |
issn | 0022-460X 1095-8568 1095-8568 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_kth_33779 |
source | ScienceDirect Freedom Collection |
subjects | Acoustics Aeroacoustics Aeroacoustics, atmospheric sound Akustik duct Ducts Engineering physics Exact sciences and technology Fluid dynamics frequency-domain Fundamental areas of phenomenology (including applications) General theory linearized Navier-Stokes Mathematical analysis Methodology Navier-Stokes equations Physics scattering Simulation Stability TECHNOLOGY TEKNIKVETENSKAP Teknisk fysik |
title | Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20whistling%20and%20the%20whistling%20potentiality%20of%20an%20in-duct%20orifice%20with%20linear%20aeroacoustics&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kierkegaard,%20A.&rft.date=2012-02-27&rft.volume=331&rft.issue=5&rft.spage=1084&rft.epage=1096&rft.pages=1084-1096&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2011.10.028&rft_dat=%3Cproquest_swepu%3E1762128318%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-db13aceb09a0f9edf9934a1341bffc6478a743db0e85b7ed79d51ec6711695333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010875304&rft_id=info:pmid/&rfr_iscdi=true |