Loading…
Bose-Einstein condensates Microscopic magnetic-field imaging
Today's magnetic-field sensors are not capable of making measurements with both high spatial resolution and good field sensitivity. For example, magnetic force microscopy allows the investigation of magnetic structures with a spatial resolution in the nanometre range, but with low sensitivity,...
Saved in:
Published in: | Nature 2005-05, Vol.435 (7041), p.440-440 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Today's magnetic-field sensors are not capable of making measurements with both high spatial resolution and good field sensitivity. For example, magnetic force microscopy allows the investigation of magnetic structures with a spatial resolution in the nanometre range, but with low sensitivity, whereas SQUIDs and atomic magnetometers enable extremely sensitive magnetic-field measurements to be made, but at low resolution. Here we use one-dimensional Bose-Einstein condensates in a microscopic field-imaging technique that combines high spatial resolution (within 3 micrometres) with high field sensitivity (300 picotesla). |
---|---|
ISSN: | 0028-0836 1476-4687 1476-4687 |
DOI: | 10.1038/435440a |