Loading…
Effects of Annealing and Doping on Nanostructured Bismuth Telluride Thick Films
Bismuth telluride is the state-of-the-art thermoelectric (TE) material for cooling applications with a figure of merit of ∼1 at 300 K. There is a need for the development of TE materials based on the concept of thick films for miniaturized devices due to mechanical and manufacturing constraints for...
Saved in:
Published in: | Chemistry of materials 2008-07, Vol.20 (13), p.4403-4410 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bismuth telluride is the state-of-the-art thermoelectric (TE) material for cooling applications with a figure of merit of ∼1 at 300 K. There is a need for the development of TE materials based on the concept of thick films for miniaturized devices due to mechanical and manufacturing constraints for the thermoelement dimensions. We reported earlier a method for the fabrication of high-quality nanostructured bismuth telluride thick films with thickness from 100 to 350 µm based on electrochemical deposition techniques. In this paper, annealing is performed to further improve the TE performance of the nanostructured bismuth telluride thick films and n/p-type solid solutions are successfully fabricated by doping Se and Sb, respectively. The conditions for both annealing and doping for the thick films are investigated, and the effects of annealing and doping on morphology, crystalline phase, grain size, Seebeck coefficient, homogeneity, electrical conductivity, and power factor of the bismuth telluride thick films have been studied. |
---|---|
ISSN: | 0897-4756 1520-5002 1520-5002 |
DOI: | 10.1021/cm800696h |