Loading…
Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide
Transitions between stable quantum phases of matter typically involve going through an unstable quantum critical point, the unique properties of which have become a focus of research in the past decade or so. Extensive bulk measurements on the nickel oxypnictide system CeNiAsO uncover heavy-fermion...
Saved in:
Published in: | Nature materials 2014-08, Vol.13 (8), p.777-781 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transitions between stable quantum phases of matter typically involve going through an unstable quantum critical point, the unique properties of which have become a focus of research in the past decade or so. Extensive bulk measurements on the nickel oxypnictide system CeNiAsO uncover heavy-fermion behaviour, suggesting the family of oxipnictides may be ideal materials for examining quantum criticality more broadly.
A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement
1
,
2
. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect
3
,
4
. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems. |
---|---|
ISSN: | 1476-1122 1476-4660 1476-4660 |
DOI: | 10.1038/nmat3991 |